Задача линейного программирования. Симплекс-метод

Нижегородский Государственный Технический Университет

Павловский филиал

Курсовая работа

по информатике на тему:

“Технология решения задач линейного программирования с помощью Поиска решений приложения Excel” .

Выполнила : Бородулина Д.А.

Группа 05-АМ.

Проверила : Ловыгина М.Б.

Павлово 2006 г.

Введение……………………………………………………………………………стр. 3

Решение задач с помощью надстройки Поиск решения

  1. Установка программы Поиск решения…………………………………………..…стр.4
  2. Диалоговое окно Поиск решения…………………………………………………..…стр.4
  3. Ввод и редактирование ограничений………………………………………………..стр.5
  4. Настройка параметров алгоритма и программы……………………………….стр.6
  1. Сохранение модели оптимизации…………………………………………………....стр.9
  2. Загрузка модели оптимизации……………………………………………………….стр.9

Вычисления и результаты решения задачи………………………………..стр. 10

Просмотр промежуточных результатов поиска решения…………...стр.11

Возникающие проблемы и сообщения процедуры поиска решения…...стр.12

Итоговые сообщения процедуры поиска решения……………………....стр.13

Примеры выполнения задач

  1. Пример № 1………………………………………………………………………………стр.15
  2. Пример № 2 (графическим способом)……………………………………………...стр..20

Вывод……………………………………………………………………………....стр.24

Список литературы…………………………………………………………....стр.25

Введение

Линейная оптимизация – это раздел математического программирования, посвящённый нахождению экстремума линейных функций нескольких переменных при дополнительных линейных ограничениях, которые налагаются на переменные. Методы, с помощью которых решаются задачи, подразделяются на универсальные (например, симплексный метод) и специальные. С помощью универсальных методов решаются любые задачи линейного программирования. Особенностью задач линейного программирования является то, что экстремум целевой функции достигается на границе области допустимых решений.

Использование электронных таблиц широко распространено для решения многочисленных и разнообразных задач, связанных с учётом и контролем результатов управленческой деятельности: торгово-закупочных операций, производственных планов, бухучёта и т. п. Вместе с тем форма электронной таблицы оказывается очень удобной при решении многих аналитических задач управления деятельностью, и в частности задач исследования операций и поиска оптимальных решений.

В экономике оптимизационные задачи возникают в связи с многочисленностью возможных вариантов функционирования конкретного экономического объекта, когда возникает ситуация выбора варианта, наилучшего по некоторому правилу, критерию, характеризуемому соответствующей целевой функцией (например, иметь минимум затрат, максимум продукции).

Такие задачи в Excel решают с помощью Поиска решения .

Процедура Поиск решения представляет собой мощный инструмент для выполнения сложных вычислений. Она позволяет находить значения переменных, удовлетворяющих указанным критериям оптимальности, при условии выполнения заданных ограничений.

Решение задач с помощью надстройки Поиск решения

1. Установка программы Поиск решения

В меню Сервис выберите команду Надстройки.

В диалоговом окне Надстройки установите флажок Поиск решения. Если диалоговое окно Надстройки не содержит команды Поиск решения , нажмите кнопку Обзор и укажите диск и папку, в которой содержится файл надстройки Solver. xla (как правило, это папка Library\ Solver folder) или запустите программу Setup , если найти файл не удаётся.

Надстройка, указанная в диалоговом окне Надстройки , остаётся активной до тех пор, пока она не будет удалена.

2. Диалоговое окно Поиск решения

Окно Поиск решения (рис. 1) вызывается командой меню Сервис>Поиск решения.

Поле Установить целевую ячейку служит для указания целевой ячейки, значение которой необходимо максимизировать, минимизировать или установить равным заданному числу. Эта ячейка должна содержать формулу.

Рис.1.Диалоговое окно Поиск решения.

Кнопка Равной служит для выбора варианта с заданным значением целевой ячейки. Чтобы установить заданное число, введите его в поле.

Поле Изменяя ячейки служит для указания ячеек, значения которых изменяются в процессе поиска решения до тех пор, пока не будут выполнены наложенные ограничения и условие оптимизации значения ячейки, указанной в поле Установить целевую ячейку.

В поле Изменяя ячейки вводятся имена или адреса изменяемых ячеек, разделяя их запятыми. Изменяемые ячейки должны быть прямо или косвенно связаны с целевой ячейкой. Допускается установка до 200 изменяемых ячеек.

Поле Предположить используется для автоматического поиска ячеек, влияющих на формулу, ссылка на которую дана в поле Установить целевую ячейку. Результат поиска отображается в поле Изменяя ячейки.

Поля Ограничения служат для отображения списка граничных условий, налагаемые на переменные задачи. Допускаются ограничения в виде равенств, неравенств, а также – требование целочисленности переменных. Ограничения добавляются по одному с помощью кнопки Добавить.

Команда Изменить Изменение ограничения.

Команда Удалить служит для снятия указанного курсором ограничения.

Команда Выполнить служит для запуска поиска решения поставленной задачи.

Команда Закрыть служит для выхода из окна диалога без запуска поиска решения поставленной задачи. При этом сохраняются установки, сделанные в окнах диалога, появлявшихся после нажатий на кнопки Параметры, Добавить, Изменить или Удалить.

Кнопка Параметры служит для отображения диалогового окна Параметры поиска решения , в котором можно загрузить или сохранить оптимизируемую модель и указать предусмотренные варианты поиска решения.

Кнопка Восстановить служит для очистки полей окна диалога и восстановления значений параметров поиска решения, используемых по умолчанию.

3.Ввод и редактирование ограничений

Диалоговые окна изменения и добавления ограничений одинаковы, рис.2.

Выберите из раскрывающегося списка условный оператор, который необходимо разместить между ссылкой и её ограничением. Это знаки операторов: не более, не менее, равно и т. д.

В поле Ограничения введите число, формулу или имя ячейки или диапазона содержащих или вычисляющих ограничивающие значения.

Чтобы приступить к набору нового условия, нажмите кнопку Добавить.

Чтобы вернуться в диалоговое окно Поиск решения, нажмите кнопку ОК.

Условные операторы целого и двоичного типа можно применять только при наложении ограничений на изменяемые ячейки.

Рис.2.Диалоговое окно Изменение ограничения.

4. Настройка параметров алгоритма и программы

Настройка параметров алгоритма и программы производится в диалоговом окне Параметры поиска решения , рис. 3.

В окне устанавливаются ограничения на время решения задач, выбираются алгоритмы, задаётся точность решения, предоставляется возможность для сохранения вариантов модели и их последующей загрузки. Значения и состояния элементов управления, используемые по умолчанию, подходят для решения большинства задач.

Рис. 3. Диалоговое окно Параметры поиска решения.

Поле Максимальное время служит для ограничения времени, отпускаемого на поиск решения задачи. В поле можно ввести время (в секундах) не превышающее 32767; значение 100, используемое по умолчанию, подходит для решения большинства лабораторных работ.

Поле Предельное число итераций служит для управления временем решения задачи, путём ограничения числа промежуточных вычислений. В поле можно ввести время (в секундах) не превышающее 32767; значение 100, используемое по умолчанию, подходит для решения большинства простых задач.

При достижении отведённого временного интервала или при выполнении отведённого числа итераций, на экране появляется диалоговое окно

Поле Относительная погрешность служит для задания точности (допустимой погрешности), с которой определяется соответствие ячейки целевому значению или приближение к указанным границам. Поле должно содержать число из интервала от 0 (нуля) до1. Низкая точность соответствует введённому числу, содержащему меньшее количество десятичных знаков, чем число, используемое по умолчанию, например, 0,0001. Высокая точность увеличит время, которое требуется для того, чтобы сошёлся процесс оптимизации. Чем меньше введённое число, тем выше точность результатов.

Поле Допустимое отклонение служит для задания допуска на отклонение от оптимального решения, если множество значений влияющей ячейки ограничено множеством целых чисел. При указании большого допуска поиск решения заканчивается быстрее.

Поле Сходимость результатов поиска решения применяется только к нелинейным задачам. Когда относительное изменение значения в целевой ячейке за последние пять итераций становится меньше числа, указанного в поле Сходимость , поиск прекращается. Условием сходимости служит дробь из интервала от 0 (нуля) до 1. Лучшую сходимость характеризует большее количество десятичных знаков, например, 0,0001 – это меньшее относительное изменение, чем 0,01. Чем меньше его значение, тем выше точность результатов. Лучшая сходимость требует больше времени на поиск оптимального решения.

Флажок Линейная модель служит для ускорения поиска решения линейной задачи оптимизации или линейной аппроксимации нелинейной задачи.

Флажок Неотрицательные значения позволяет установить нулевую нижнею границу для тех влияющих ячеек, для которых она не была указана в поле Ограничение диалогового окна Добавить ограничение .

Флажок служит для включения автоматической нормализации входных и выходных значений, качественно различающихся по величине, например, максимизация прибыли в процентах по отношению к вложениям, исчисляемым в миллионах рублей.

Флажок служит для приостановки поиска решения для просмотра результатов отдельных итераций.

Кнопки Оценки служат для указания метода экстраполяции (линейная или квадратичная), используемого для получения исходных оценок значений переменных в каждом одномерном поиске.

Линейная служит для использования линейной экстраполяции вдоль касательного вектора.

Квадратичная служит для использования квадратичной экстраполяции, которая даёт лучшие результаты при решении нелинейных задач.

Кнопки Разности (производные) служат для указания метода численного дифференцирования (прямые или центральные производные), который используется для вычисления частных производных целевых и ограничивающихся функций.

Прямые используется для гладких непрерывных функций.

Центральные используется для функций, имеющих разрывную производную. Не смотря на то, что данный способ требует больше вычислений, он может помочь при получении итогового сообщения о том, что процедура поиска решения не может улучшить текущий набор влияющих ячеек.

Кнопки Метод поиска служат для выбора алгоритма оптимизации (метод Ньютона или сопряжённых градиентов).

Кнопка Ньютона служит для реализации квазиньютоновского метода, в котором запрашивается больше памяти, но выполняется меньше итераций, чем в методе сопряжённых градиентов. Здесь вычисляются частные производные второго порядка.

Кнопка Сопряжённых градиентов служит для реализации метода сопряжённых градиентов, в котором запрашивается меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно велика и необходимо экономить память, а также если итерации дают слишком малое отличие в последовательных приближениях.

Для решения линейных задач используются алгоритмы симплексного метода. Для решения целочисленных задач используется метод ветвей и границ.

Команда Сохранить модель служит для отображения на экране диалогового окна Сохранить модель, в котором можно задать ссылку на область ячеек, предназначенную для хранения модели оптимизации. Данный вариант предусмотрен для хранения на листе более одной модели оптимизации. Первая модель сохраняется автоматически.

Команда Загрузить модель служит для отображения на экране диалогового окна Загрузить модель, в котором можно задать ссылку на область ячеек, содержащих загружаемую модель.

1. Сохранение модели оптимизации

  1. В меню Сервис выберите команду Поиск решения.
  2. Нажмите кнопку Параметры.
  3. Нажмите кнопку Сохранить модель. Появляется окно Сохранить модель, рис. 4.
  4. В поле Задайте область модели введите ссылку на верхнюю ячейку столбца, в котором хотите разместить модель оптимизации.

Рис. 4. Диалоговое окно Сохранить модель.

Значения элементов управления диалоговых окон Поиск решения и Параметры поиска решения записываются на лист. Чтобы использовать на листе несколько моделей оптимизации, нужно сохранить их в разных диапазонах (столбцах).

Предлагаемый диапазон содержит ячейку для каждого ограничения, а также ещё три ячейки. Можно также ввести ссылку только на верхнюю ячейку столбца, в котором следует сохранить модель.

Диалоговое окно Загрузить модель используется для задания ссылки на область загружаемой модели оптимизации. Ссылка должна адресовать область модели целиком, недостаточно указать только первую ячейку.

Перед тем как использовать данную процедуру, необходимо сохранить хотя бы одну модель.

1 В меню Сервис выберите команду Поиск решения.

2. Нажмите кнопку Параметры.

3. Нажмите кнопку Загрузить модель. Появляется окно, аналогичное окну Сохранить модель.

Диалоговое окно Загрузить модель используется для задания ссылки на область загружаемой (ранее сохранённой) модели оптимизации. Ссылка должна адресовать область модели целиком не достаточно указать только первую ячейку.

Вычисления и результаты решения задачи

Для запуска оптимизатора нажмите кнопку Выполнить в окне Поиск решения.

Программа начинает работать, в строке сообщений (слева внизу листа) появляется сообщение Постановка задачи… Ваша таблица с моделью и параметрами алгоритма автоматически приводится к стандартам постановки задач математического программирования. Это преимущество Excel. В других пакетах Вам пришлось бы оторваться от экономической сути задачи и заниматься формальной математической постановкой задачи. После этапа постановки решается задача.

Чтобы прервать поиск решения, нажмите клавишу ESC. Microsoft Excel пересчитает лист с учётом найденных значений влияющих ячеек.

По окончании счёта появляется диалоговое окно Результаты поиска решения, рис. 5.

Рис. 5. Диалоговое окно Результаты поиска решения.

Поле Тип отчёта служит для указания типа отчёта, размещаемого на отдельном листе книги.

Отчёт Результаты используется для создания отчёта, состоящего из целевой ячейки и списка влияющих ячеек модели, их исходных и конечных значений, а также формул ограничений и дополнительных сведений о наложенных ограничениях.

Отчёт Устойчивость используется для создания отчёта, содержащего сведения о чувствительности решения к малым изменениям в формуле модели или в формулах ограничений. Такой отчёт не создаётся для моделей, значения в которых ограничены множеством целых чисел. В случае нелинейных моделей отчёт содержит данные для градиентов и множителей Лагранжа. В отчёт по нелинейным моделям включаются ограниченные затраты, фиктивные цены, а также диапазоны ограничений.

Отчёт Пределы используется для создания отчёта, состоящего из целевой ячейки и списка влияющих ячеек модели, их значений, а также нижних и верхних границ. Такой отчёт не создаётся для моделей, значения в которых ограничены множеством целых чисел. Нижним пределом является наименьшее значение, которое может содержать влияющая ячейка, в то время как значения остальных влияющих ячеек фиксированы и удовлетворяют наложенным ограничениям. Соответственно верхним пределом называется наибольшее значение.

К сожалению, эти отчёты очень неудобны. Они перегружены плохо читаемыми абсолютными ссылками со знаками доллара. Желает лучшего и перевод с английского на русский.

Кнопка Сохранить сценарий служит для отображения диалогового окна Сохранение сценария , в котором можно сохранить сценарий решения задачи, чтобы использовать его в дальнейшем с помощью диспетчера сценариев Microsoft Excel. В поле Название сценария введите имя сценария. Чтобы создать сценарий, не сохраняя найденное решение и не отображая результатов на листе, сохраните сценарий в диалоговом окне Результаты поиска решения , а затем выберите Восстановить исходные значения.

Просмотр промежуточных результатов поиска решения

Режим пошагового решения задач используется при отладке моделей.

В диалоговом окне Поиск решения нажмите кнопку Параметры.

Чтобы получить возможность просмотра текущих значений влияющих ячеек каждой итерации, установите флажок Показывать результаты итераций, нажмите кнопку ОК, а затем кнопку Выполнить.

На экране появится диалоговое окно , рис. 6, а влияющие ячейки листа изменят свои значения.

Чтобы остановить поиск решения и вывести на экран диалоговое окно Результаты поиска решения, нажмите кнопку Стоп.


Рис.6. Диалоговое окно Текущее состояние поиска решения.

Чтобы выполнить следующую итерацию и просмотреть её результаты, нажмите кнопку Продолжить.

Возникающие проблемы и сообщения процедуры поиска решения

Оптимальное решение не найдено

Поиск решения может остановиться до достижения оптимального решения по следующим причинам.

Пользователь прервал процесс поиска.

Команда Показывать результаты итераций в диалоговом окне Параметры поиска решения выбрана перед Выполнить.

Пользователь нажал кнопку Стоп в режиме пошагового выполнения итераций, по истечении времени, отведённого на работу процедуры, или после выполнения заданного числа итераций.

Установлен флажок Линейная модель в диалоговом окне Параметры поиска решения, в то время как решаемая задача не линейна.

Значение, заданное в поле Установить целевую диалогового окна Поиск решения , неограниченно увеличивается или уменьшается. Необходимо уменьшить значения полей Максимальное время или Итерации в диалоговом окне Параметры поиска решения.

В случае задач, значения в которых ограничены множеством целых чисел, необходимо уменьшить значение в поле Допустимое отклонение диалогового окна Параметры поиска решения , что позволит найти лучшее решение.

В случае нелинейных задач необходимо уменьшить значение в поле Сходимость диалогового окна Параметры поиска решения , что позволит продолжать поиск решения, когда значение в целевой ячейке изменяется медленно.

Если значения влияющих ячеек или значения влияющей и целевой ячеек различаются на несколько порядков, необходимо установить флажок Автоматическое масштабирование в диалоговом окне Параметры поиска решения. Внесите нужные изменения и запустите процедуру поиска решения снова.

Если найденное решение нелинейной задачи существенно отличается от ожидаемого результата, запустите процедуру поиска решения с другими начальными значениями влияющих ячеек. Если задать такие значения влияющих ячеек, которые близко расположены от экстремальной точки целевой функции, можно значительно сократить время поиска решения.

Итоговые сообщения процедуры поиска решения

1. Если поиск решения успешно завершён, в диалоговом окне Результаты поиска решения

Решение найдено. Все ограничения и условия оптимальности выполнены.

Все ограничения соблюдены с установленной точностью и найдено заданное значение целевой ячейки.

Поиск свёлся к текущему решению. Все ограничения выполнены.

Относительное изменение значения в целевой ячейке за последние пять итераций стало меньше установленного значения параметра Сходимость в диалоговом окне Параметры поиска решения . Чтобы найти более точное решение, установите меньшее значение параметра Сходимость , но это займёт больше времени.

2. Если поиск не может найти оптимальное решение, в диалоговом окне Результаты поиска решения выводится одно из следующих сообщений.

Поиск не может улучшить текущее решение. Все ограничения выполнены.

В процессе поиска решения нельзя найти такой набор значений влияющих ячеек, который был бы лучше текущего решения. Приблизительное решение найдено, но либо дальнейшее уточнение невозможно, либо заданная погрешность слишком высока. Измените погрешность на меньшее число и запустите процедуру поиска решения снова.

3. Поиск остановлен (истекло заданное на поиск время).

Время, отпущенное на решение задачи, исчерпано, но достичь удовлетворительного решения не удалось. Чтобы при следующем запуске процедуры поиска решения не повторять выполненные вычисления, установите переключатель Сохранить найденное решение или Сохранить сценарий .

4. Поиск остановлен (достигнуто максимальное число итераций).

Произведено разрешённое число итераций, но достичь удовлетворительного решения не удалось. Увеличение числа итераций может помочь, однако следует рассмотреть результаты, чтобы понять причины остановки. Чтобы при следующем запуске процедуры поиска решения не повторять выполненные вычисления установите переключатель Сохранить найденное решение или Сохранить сценарий .

5. Значения целевой ячейки не сходятся.

Значение целевой ячейки неограниченно увеличивается (или уменьшается), даже если все ограничения соблюдены.Возможно, следует в задаче снять одно ограничение или сразу несколько, или наложить дополнительные ограничения. Изучите процесс расхождения решения, проверьте ограничения и запустите задачу снова. Например, в задаче об оптимальных портфелях банков, если не наложить ограничение на портфель привлечения ресурсов, то банк как аферист будет занимать деньги до бесконечности.

6. Поиск не может найти подходящее решение.

В процессе поиска решения нельзя сделать итерацию, которая удовлетворяла бы всем ограничениям при заданной точности. Вероятно, ограничения противоречивы. Исследуйте лист на предмет возможных ошибок в формулах ограничений или в выборе ограничений.

7. Поиск остановлен по требованию пользователя.

Нажата кнопка Стоп в диалоговом окне Текущее состояние поиска решения после прерывания поиска решения в процессе выполнения итераций.

8. Условия для линейной модели не удовлетворяются.

Установлен флажок Линейная модель , однако итоговый пересчёт порождает такие значения, которые не согласуются с линейной моделью. Это означает, что решение недействительно для данных формул листа. Чтобы проверить линейность задачи, установите флажок Автоматическое масштабирование и повторно запустите задачу. Если это сообщение опять появится на экране, снимите флажок Линейная модель и снова запустите задачу.

9. При поиске решения обнаружено ошибочное значение в целевой ячейке или в ячейке ограничения.

При пересчёте значений ячеек обнаружена ошибка в одной формуле или в нескольких сразу. Найдите целевую ячейку или ячейку ограничения, порождающие ошибку, и измените их формулы так, чтобы они возвращали подходящее числовое значение.

Набрано неверное имя или формула в окне Добавить ограничение или окне Изменить ограничение или в поле Ограничения были заданы целое или двоичное ограничение. Чтобы ограничить значения ячейки множеством целых чисел, выберите оператор целого ограничения в списке условных операторов. Чтобы установить двоичное ограничение, выберите оператор для двоичного ограничения.

10. Мало памяти для решения задачи.

Система не смогла выделить память, необходимую для поиска решения. Закройте некоторые файлы или приложения, и попытайтесь снова выполнить процедуру поиска решения.

Примеры выполнения задач

ПРИМЕР № 1

Для изготовления четырёх видов продукции используют три вида сырья. Запасы сырья, нормы его расхода и прибыль от реализации каждого продукта приведены в таблице.

Какое количество продукции каждого вида должно изготовляться, чтобы доход от реализации был максимальным?

1. Формулировка математической модели задачи :

· переменные для решения задачи: x 1 – суточный объём изготовления продукции А, x 2 – суточный объём изготовления продукции Б, x 3 – суточный объём изготовления продукции В, x 4 – суточный объём изготовления продукции Г;

· определение функции цели (критерия оптимизации). Суммарная суточная прибыль от изготовления всех видов продукции равна:

F=12* x 1 +7* x 2 +18* x 3 +10* x 4,

поэтому цель состоит в том, чтобы среди всех допустимых значений x 1, x 2, x 3, x 4 найти такие, которые максимизируют суммарную прибыль от изготовления продуктов F:

· ограничения на переменные:

1. объём производства продукции не может быть отрицательным, т. е.

2. расход исходного продукта для изготовления всех видов продукции не может превосходить максимально возможного запаса данного исходного продукта, т. е.

Таким образом, получаем следующую математическую модель задачи:

· Найти максимум следующей функции:

F=12* x 1 +7* x 2 +18* x 3 +10* x 4 max;

· При ограничениях вида:

1* x 1 +2* x 2 +1* x 3 +0* x 4 ≤ 18,

1* x 1 +1* x 2 +2* x 3 +1* x 4 ≤ 30,

1* x 1 +3* x 2 +3* x 3 +2* x 4 ≤ 40,

x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0;

2. Подготовка листа рабочей книги MS Excel для вычислений на рабочий лист вводим необходимый текст, данные и формулы в соответствии с рис. 7. Переменные задачи x 1, x 2, x 3, x 4 находятся соответственно в C3, С4, С5, С6 . Целевая функция находится в ячейке С8 и содержит формулу:

12*C3+7*C4+18*C5+10*C6

Ограничения на задачу учтены в ячейках С10:С12.

3. Работа с надстройкой Поиск решения – воспользовавшись командой Сервис | Поиск решения, вводим необходимые данные для рассматриваемой задачи (установка данных в окне Поиск решения приведена на рис. 8). Результат работы по поиску решения помещён на рис. 9 – 14.

Рис. 7. Рабочий лист MS Excel для решения задачи .

Рис. 8. Установка необходимых параметров задачи в окне Поиск решения .

Рис.9. Результаты расчёта надстройки Поиск решения.

Рис. 10. Отчёт по результатам поиска решения.

Рис. 11. Отчёт по устойчивости поиска решения.


Рис. 12. Отчёт по пределам поиска решения.

ВЫВОД : из решения видно, что оптимальный план выпуска предусматривает изготовление продукции видов "А" и "Г". А продукцию видов "Б" и "В" производить не стоит. Полученная Вами прибыль составит 326 усл. ед.

ПРИМЕР № 2

Задача распределения ресурсов

Предприятие изготавливает и продает краску двух видов: для внутренних и внешних работ. Для производства краски используется два исходных продукта A и B. Расходы продуктов A и B на 1 т. соответствующих красок и запасы этих продуктов на складе приведены в таблице:

Продажная цена за 1 тонну краски для внутренних работ составляет 2 000 рублей, краска для наружных работ продается по 1 000 рублей за 1 тонну. Требуется определить какое количество краски каждого вида следует производить предприятию, чтобы получить максимальный доход.

Рассмотрим поэтапное решение этой задачи графическим способом с использованием процедуры « Поиск решения » Excel.

I. Составление математической модели задачи.

1) Переменные задачи.

Обозначим: x 1 - количество производимой краски для

внутренних работ;

x 2 - соответствующее количество краски

для наружных работ.

2) Ограничения, которым должны удовлетворять переменные задачи:

по расходу продукта A: x 1 + 2x 2 3;

по расходу продукта B: 3x 1 + x 2 3;

В левых частях последних двух неравенств определены расходы продуктов A и B, а в правых частях неравенств записаны запасы этих продуктов.

3) Целевая функция задачи.

Обозначим Z доход от продажи краски (в тысячах рублей), тогда целевая функция задачи записывается так:

Z = 2x 1 + x 2 ,

таким образом, задача состоит в том, чтобы найти max Z=2x 1 +x 2 , при ограничениях:

x 1 + 2x 2 3 (A)

3x 1 + x 2 3 (B)

x 1 , x 2 0 .

Так как переменные задачи x 1 и x 2 входят в целевую функцию и ограничения задачи линейно , то соответствующая задача оптимизации называется задачей линейного программирования (ЛП)

В рассматриваемом примере содержатся только две переменные x 1 и x 2 , поэтому задачу можно решить графически.

1) На плоскости x 1 , x 2 строим область допустимых значений переменных, определяемую ограничениями задачи:

x 1 + 2x 2 3 (A)

3x 1 + 1x 2 3 (B)

x 1 , x 2 0 .

Последнее ограничение определяет первый квадрант плоскости. Чтобы построить множество точек удовлетворяющих неравенству (А) нанесем на плоскость график прямой, определяющий границу этого множества: x 1 +2x 2 =3 (A).

Линии уровня целевой функции. Линией уровня называется множество точек, на которых функция принимает постоянное значение:

Z = 2x 1 + x 2 = К,

где К - задаваемая постоянная.

При К = 1 уравнение линии уровня будет:

2x 1 + x 2 = 1

или (в отрезках) :

При К = 2, аналогично:

2x 1 + x 2 = 2 , или .

Нанеся линии уровня на область допустимых решений (рис.13), получим, что при увеличении значения Z соответствующая линия уровня перемещается параллельно предыдущей вправо и вверх. Таким образом, точкой из многоугольника ABCD в которой целевая функция Z имеет максимальное значение будет вершина С. Эта точка и определяет решение задачи.

x 1 + 2x 2 = 3 (A)

3x 1 + x 2 = 3 (B)

x 1 * = 0.6 ; x 2 * = 1.2 ;

максимальное значение Z:

Z * = 2*0.6 + 1.2 = 2.4.

Надстройка Поиск решения в Microsoft Excel даёт возможность найти решение, оптимальное при нескольких входных значениях и наборе ограничений на решение. Программа Поиск решения содержит параметры, управляющие процессом поиска решения: максимальное время, число итераций, точность, допустимое отклонение. Каждый из этих параметров имеет значение по умолчанию, подходящее для большинства задач. Использование новых установок параметров обычно необходимо для проведения серьёзных исследований сложных систем управления. Диспетчер сценариев способен запомнить несколько решений, найденных данным средством, и сгенерировать на этой основе отчёт. Надстройка Поиск решения готовит три вида отчётов, которые характеризуют найденное решение задачи: отчёт по результатам, отчёт по устойчивости и отчёт по пределам. Режим пошагового поиска позволяет наблюдать последовательность приближений к оптимальному решению задачи. Во многих случаях это помогает «почувствовать» сходимость процесса и установить причины неудач и тупиков при поиске оптимального решения. В результате поиска решения EXCEL выводит сообщения о том, удалось ли получить оптимальное решение задачи.

С помощью надстройки Поиск решения можно решать как линейные задачи (задачи линейного, целочисленного и стохастического программирования), так и нелинейные (задачи нелинейного программирования), а также системы нелинейных уравнений. Для успешной работы средства Поиск решения следует стремиться к тому, чтобы зависимости были гладкими или, по крайней мере, непрерывными.

Поиск решения можно использовать и для решения задач математического программирования других типов, но в этом случае процедура поиска часто заканчивается неудачей, а при благоприятном исходе находит лишь один из локальных оптимумов. Поэтому решение таких задач с помощью данной процедуры следует предварять их аналитическим исследованием на предмет свойств области допустимых решений, чтобы выбрать подходящие начальные значения и сделать правильное заключение о качестве и практической применимости полученного решения.

Список литературы

1. Л. В. Рудикова «Microsoft Excel для студента», Санкт – Петербург, БХВ-Петербург, 2005;

2. «Лабораторные работы на персональном компьютере» И. Ф. Цисарь, издательство «Экзамен», Москва, 2002;

3. Додж М. и др. «Эффективная работа с Microsoft Excel», 2000.СПб.:Питер, 2001.

4. Солодовников А. С. «Введение в линейную алгебру и линейное программирование». Москва, издательство «Просвещение», 1966. – 184 с.

5. Стрейвер А. «Теория линейного и целочисленного программирования» в двух томах, том 1: перевод с английского. – Москва: Мир, 1991. – 360 с.

6. Ашманов С.А.«Линейное программирование». - М.: Наука, 1981.

7. Банди Б. «Основы линейного программирования»: Пер. с англ. - М.: Радио и связь, 1989.

8. Кораблин М. А. «Информатика поиска управленческих решений», Москва, СОЛОН-Пресс, 2003.

9. Габасов Р., Кириллова Ф.М. Методы линейного программирования. Ч.1. Общие задачи, Минск, Изд-во БГУ им. В.И. Ленина, 1977. - 176 с.

Изучив алгоритмы "ручного" решения задач линейного программирования, полезно познакомиться и со способом упростить этот процесс. Ясно, что чем сложнее задача, чем больше в ней переменных и условий, тем утомительнее и дольше ее решать. В таких случаях удобно использовать специальные математические пакеты, или доступную многим программу MS Excel.

Решить задачи линейного программирования в Excel достаточно просто: 1) внести исходные данные задачи и ограничения, 2) запустить надстройку Поиск решения, 3) установить нужные параметры решения и запустить выполнение. Программа подберет оптимальное решение, выдаст отчеты для анализа решения задачи.

Подробнее все эти этапы с пояснениями и скриншотами разобраны ниже в примерах на разных задачах линейного программирования - изучайте, ищите похожие, решайте. Если вам нужна помощь в выполнении заданий, перейдите в раздел: Контрольные работы по линейному программированию .


Линейное программирование: примеры решений в Excel

Задача 1. Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать выводы по полученным результатам.
Для производства столов и шкафов мебельная фабрика использует различные ресурсы. Нормы затрат ресурсов на одно изделие данного вида, прибыль от реализации одного изделия и общее количество имеющихся ресурсов каждого вида приведены в таблице.
Определить, сколько столов и шкафов фабрике следует выпускать, чтобы прибыль от реализации была максимальной.

Задача 2. Цех производит 8 различных видов деталей для двигателей A, B, C1, C2, C3, D, E6, F имея в своем распоряжении перечисленный ниже парк из 7 видов универсальных станков: 2 шт. -ADF, 3 шт. -SHG, 3 шт. -BSD, 1 шт. -AVP, 1 шт. -BFG, 3 шт. -ABM, 2 шт. -RL.
Время, требуемое для обработки единицы каждого продукта на каждом станке, вклад в прибыль от производства единицы каждого продукта и рыночный спрос на каждый продукт за месяц даны в таблице.
Цех работает 12 часов в день. Каждый месяц содержит 26 рабочих дней. Для упрощения задачи считаем, что возможен произвольный порядок обработки деталей на различных станках.
Составьте оптимальный план производства.
Определите, производство каких продуктов лимитировано рынком, и каких – техническими возможностями цеха. Какие машинные ресурсы должны быть увеличены в первую очередь, чтобы добиться максимального увеличения прибыли (при заданных потребностях рынка)?
Есть ли продукт, который невыгодно производить? Почему? Что нужно изменить, чтобы все продукты стало выгодно производить?



Задача 3. Необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ тиамина Т и ниацина Н. Пищевая ценность рациона (в калориях) должна быть не менее заданной. Смесь для цыплят изготавливается из двух продуктов - К и С. Известно содержание тиамина и ниацина в этих продуктах, а также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в таблице.

Задача 4. Фирма "Компьютер-сервис" поставляет компьютеры под ключ четырех базовых комплектаций: «домашний», «игровой», «офисный» и «экстрим». Известны средние затраты времени на сборку, проверку и подключение компьютеров. Каждый компьютер приносит определенный уровень прибыли, но спрос ограничен. Кроме того, в плановом периоде ограничен ресурс человеко-часов, отведенных на выполнение каждой производственной операции. Определить, сколько компьютеров каждого типа необходимо произвести в плановом периоде, имея целью максимизировать прибыль.

Задача 5. На лесопилку поступают доски длиной 10 м. По контракту лесопилка должна поставить клиенту не менее 100 досок длиной 5 м, не менее 200 досок длиной 4 м и не менее 300 досок длиной 3 м. Как работникам лесопилки выполнить условия контракта, разрезав наименьшее количество досок?

Задача 6. Компания "Евростройтур" организует экскурсионные автобусные туры по странам Европы. Компания получила 4 новых автобуса и предполагает направить их на маршруты во Францию, Италию, Чехию и Испанию. Каждый автобус обслуживают 2 водителя. Компанией приглашены 8 водителей, в различной степени знакомых с дорогами европейских стран (в % от экскурсионного маршрута).
Необходимо распределить водителей так, чтобы общий показатель освоения маршрутов был максимальным.

Задача 7. Решить задачу методом ветвей и границ, решая отдельные задачи линейного нецелочисленного программирования с помощью функции "Поиск решения" в Microsoft Excel (в случае, если первая же задача ЛП выдает целочисленное решение, не позволяя ветвить задачу, немного изменить начальные условия).
Состав еды рядовых регламентируется верховной ставкой главнокомандующего, которая устанавливает нижние нормы питания в сутки по основным компонентам: 1500 килокалорий, 100 г белков, 280 г углеводов, 90 г жиров, 1 кг воды. На складах есть 4 вида продуктов, которые выдают защитникам Родины сухим пайком: лимонад, тушенка в маленьких банках, унифицированные наборы горбушек и пирожки с ежевикой. Стоимость этих четырех продуктов соответственно 12 руб., 34 руб., 3 руб. и 20 руб. Какова минимальная сумма, которую должен затратить прапорщик на питание одного солдата?

Задача 8. Предприятие выпускает два вида продукции: Изделие 1 и Изделие 2. На изготовление единицы Изделия 1 требуется затратить a11 кг сырья первого типа, a21 кг сырья второго типа, a31 кг сырья третьего типа.
На изготовление единицы Изделия 2 требуется затратить a12 кг сырья первого типа, a22 кг сырья второго типа, a32 кг сырья третьего типа.
Производство обеспечено сырьем каждого типа в количестве b1 кг, b2 кг, b3 кг соответственно.
Рыночная цена единицы Изделия 1 составляет c1 тыс. руб., а единицы Изделия 2 - c2 тыс.руб.
Требуется:
1) построить экономико – математическую модель задачи;
2) составить план производства изделий, обеспечивающий максимальную выручку от их реализации при помощи графического метода решения задачи линейного программирования.
3) составить план производства изделий, обеспечивающий максимальную выручку от их реализации при помощи табличного симплекс – метода решения задачи линейного программирования.
4) составить план производства изделий, обеспечивающий максимальную выручку от их реализации, используя надстройку «Поиск решения» в среде MS EXCEL.

Требуется определить, в каком количестве надо выпустить продукцию четырех типов Прод1, Прод2, Прод3, Прод4, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены на рис. 1.

Ресурс

Прод1

Прод2

Прод3

Прод4

Знак

Наличие

Прибыль

Трудовые

Сырье

Финансы

Рисунок 1.

Математическая модель задачи имеет вид:

где x j – количество выпускаемой продукции j-го типа; F – функция цели; в левых частях выражений ограничений указаны величины потребного ресурса , а правые части показывают количество имеющегося ресурса .

Ввод условий задачи

Для решения задачи с помощью Excel следует создать форму для ввода исходных данных и ввести их. Форма ввода показана на рис. 2.

В ячейку F6 введено выражение целевой функции как суммы произведений значений прибыли от выпуска единицы продукции каждого типа на количество выпускаемой продукции соответствующего типа. Для наглядности на рис. 3 представлена форма ввода исходных данных в режиме вывода формул.

В ячейки F8:F10 введены левые части ограничений для ресурсов каждого вида.

Рисунок 2.

Рисунок 3.

Решение задачи линейного программирования

Для решения задач линейного программирования в Excel используется мощный инструмент, называемый Поиск решения . Обращение к Поиску решения осуществляется из меню Сервис , на экран выводится диалоговое окно Поиска решения (рис. 4).

Рисунок 4.

Ввод условий задачи для поиска ее решения состоит из следующих шагов:

1 Назначить целевую функцию, для чего установить курсор в поле Установить целевую ячейку окна Поиск решения и щелкнуть в ячейке F6 в форме ввода;

2 Включить переключатель значения целевой функции, т.е. указать ее Равной Максимальному значению ;

3 Ввести адреса изменяемых переменных (x j): для этого установить курсор в поле Изменяя ячейки окна Поиск решения, а затем выделить диапазон ячеек B3:E3 в форме ввода;

4 Нажать кнопку Добавить окна Поиск решения для ввода ограничений задачи линейного программирования; на экран выводится окно Добавление ограничения (рис. 5) :

Ввести граничные условия для переменных x j (x j ³0), для этого в поле Ссылка на ячейку указать ячейку В3, соответствующую х 1 , выбрать из списка нужный знак (³), в поле Ограничение указать ячейку формы ввода, в которой хранится соответствующее значение граничного условия, (ячейка В4), нажать кнопку Добавить ; повторить описанные действия для переменных х 2 , х 3 и х 4 ;

Ввести ограничения для каждого вида ресурса, для этого в поле Ссылка на ячейку окна Добавление ограничения указать ячейку F9 формы ввода, в которой содержится выражение левой части ограничения, наложенного на трудовые ресурсы, в полях Ограничение указать знак £ и адрес Н9 правой части ограничения, нажать кнопку Добавить ; аналогично ввести ограничения на остальные виды ресурсов;

После ввода последнего ограничения вместо Добавить нажать ОК и возвратиться в окно Поиск решения.

Рисунок 5.

Решение задачи линейного программирования начинается с установки параметров поиска:

В окне Поиск решения нажать кнопку Параметры , на экран выводится окно Параметры поиска решения (рис. 6);

Установить флажок Линейная модель, что обеспечивает применение симплекс-метода;

Указать предельное число итераций (по умолчанию – 100, что подходит для решения большинства задач);

Установить флажок , если необходимо просмотреть все этапы поиска оптимального решения;

Нажать ОК , возврат в окно Поиск решения .

Рисунок 6.

Для решения задачи нажать кнопку Выполнить в окне Поиск решения , на экране – окно Результаты поиска решения (рис. 7), в котором содержится сообщение Решение найдено. Все ограничения и условия оптимальности выполнены. Если условия задачи несовместны, то выводится сообщение Поиск не может найти подходящего решения . Если целевая функция не ограничена, то появляется сообщение Значения целевой ячейки не сходятся .

Рисунок 7.

Для рассматриваемого примера решение найдено и результат оптимального решения задачи выводится в форме ввода: значение целевой функции, соответствующее максимальной прибыли и равное 1320, указывается в ячейке F6 формы ввода, оптимальный план выпуска продукции х 1 =10, х 2 =0, х 3 =6, х 4 =0 указывается в ячейках В3:С3 формы ввода (рис. 8).

Количество использованных для выпуска продукции ресурсов выводится в ячейки F9:F11: трудовых – 16, сырья – 84, финансов – 100.

Рисунок 8.

Если при установке параметров в окне Параметры поиска решения (рис. 6) был установлен флажок Показывать результаты итераций , то будут показаны последовательно все шаги поиска. На экран будет выводиться окно (рис. 9). При этом текущие значения переменных и функции цели будут показаны в форме ввода. Так, результаты первой итерации поиска решения исходной задачи представлены в форме ввода на рисунке 10 .

Рисунок 9.

Рисунок 10.

Чтобы продолжить поиск решения, следует нажимать кнопку Продолжить в окне Текущее состояние поиска решения .

Анализ оптимального решения

Прежде чем, перейти к анализу результатов решения, представим исходную задачу в форме

введя дополнительные переменные у i , представляющие собой величины неиспользованных ресурсов.

Составим для исходной задачи двойственную задачу и введем дополнительные двойственные переменные v i .

Анализ результатов поиска решения позволит увязать их с переменными исходной и двойственной задач.

С помощью окна Результаты поиска решения можно вызвать отчеты трех типов, позволяющие анализировать найденное оптимальное решение:

Результаты,

Устойчивость,

Пределы.

Для вызова отчета в поле Тип отчета выделить название нужного типа и нажать ОК .

1 Отчет по результатам (рис. 11) состоит из трех таблиц:

Таблица 1 содержит сведения о целевой функции; в столбце Исходно указывается значение целевой функции до начала вычислений;

Таблица 2 содержит значения искомых переменных x j , полученных в результате решения задачи (оптимальный план выпуска продукции);

Таблица 3 показывает результаты оптимального решения для ограничений и для граничных условий.

Для Ограничений в графе Формула приведены зависимости, которые были введены при задании ограничений в окне Поиск решения ; в графе Значение указаны величины использованного ресурса; в графе Разница показано количество неиспользованного ресурса. Если ресурс используется полностью, то в графе Состояние выводится сообщение связанное ; при неполном использовании ресурса в этой графе указывается не связан. Для Граничных условий приводятся аналогичные величины с той лишь разницей, что вместо неиспользованного ресурса показана разность между значением переменной x j в найденном оптимальном решении и заданным для нее граничным условием (x j ³0).

Именно в графе Разница можно увидеть значения дополнительных переменных y i исходной задачи в формулировке (2). Здесь у 1 =у 3 =0, т.е. величины неиспользованных трудовых и финансовых ресурсов равны нулю. Эти ресурсы используются полностью. Вместе с тем, величина неиспользованных ресурсов для сырья у 2 =26, значит, имеются излишки сырья.

Рисунок 11.

2 Отчет по устойчивости (рис. 12)состоит из двух таблиц.

В таблице 1 приводятся следующие значения:

Результат решения задачи (оптимальный план выпуска);

- Нормир. стоимость , т.е. величины, показывающие, насколько изменится целевая функция при принудительном включении единицы продукции соответствующего типа в оптимальный план;

Коэффициенты целевой функции;

Предельные значения приращения коэффициентов целевой функции, при которых сохраняется оптимальный план выпуска.

В таблице 2 содержатся аналогичные данные для ограничений:

Величины использованных ресурсов;

- Теневая цена , показывающая, как изменится целевая функция при изменении величины соответствующего ресурса на единицу;

Допустимые значения приращений ресурсов, при которых сохраняется оптимальный план выпуска продукции.

Рисунок 12.

Отчет по устойчивости позволяет позволяет получить двойственные оценки.

Как известно, двойственные переменные z i показывают, как изменится целевая функция при изменении ресурса i-го типа на единицу. В отчете Excel двойственная оценка называется Теневой ценой .

В нашем примере сырье не используется полностью и его ресурс у 2 =26. Очевидно, что увеличение количества сырья, например, до 111 не повлечет за собой увеличения целевой функции. Следовательно, для второго ограничения двойственная переменная z 2 =0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка этого ограничения равна нулю.

В рассматриваемом примере трудовые ресурсы и финансы использовались полностью, поэтому их дополнительные переменные равны нулю (у 1 =у 3 =0). Если ресурс используется полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции, и следовательно, на величину целевой функции. Двойственные оценки ограничений на трудовые и финансовые ресурсы отличны от нуля, т.е. z 1 =20, z 3 =10.

Значения двойственных оценок находим в Отчете по устойчивости , в таблице 2, в графе Теневая цена .

При увеличении (уменьшении) трудовых ресурсов на единицу целевая функция увеличится (уменьшится) на 20 единиц и будет равна

F=1320+20×1=1340 (при увеличении).

Аналогично, при увеличении объема финансов на единицу целевая функция будет

F=1320+10×1=1330.

Здесь же, в графах Допустимое увеличение и Допустимое уменьшение таблицы 2, показаны допустимые пределы изменения количества ресурсов j-го вида. Например, для при изменении приращения величины трудовых ресурсов в пределах от –6 до 3,55, как показано в таблице, структура оптимального решения сохраняется, т.е наибольшую прибыль обеспечивает выпуск Прод1 и Прод3, но в других количествах.

Дополнительные двойственные переменные также отражены в Отчете по устойчивости в графе Нормир. стоимость таблицы 1.

Если основные переменные не вошли в оптимальное решение, т.е. равны нулю (в примере х 2 =х 4 =0), то соответствующие им дополнительные переменные имеют положительные значения (v 2 =10, v 4 =20). Если же основные переменные вошли в оптимальное решение (х 1 =10, х 3 =6), то их дополнительные двойственные переменные равны нулю (v 1 =0, v 3 =0).

Эти величины показывают, насколько уменьшится (поэтому знак минус в значениях переменных v 2 и v 4) целевая функция при принудительном выпуске единицы данной продукции. Следовательно, если мы захотим принудительно выпустить единицу продукции вида Прод3, то целевая функция уменьшится на 10 единиц и будет равна 1320 -10×1 =1310.

Обозначим через Dс j изменение коэффициентов целевой функции в исходной модели (1). Эти коэффициенты определяют прибыль, получаемую при реализации единицы продукции j-го вида.

В графах Допустимое увеличение и Допустимое Уменьшение таблицы 1 Отчета по устойчивости показаны пределы изменения Dс j , при которых сохраняется структура оптимального плана, т.е. будет выгодно по-прежнему выпускать продукцию вида Продj. Например, при изменении Dс 1 в пределах -12£ Dс 1 £ 40, как показано в отчете, по-прежнему будет выгодно выпускать продукцию вида Прод1. При этом значение целевой функции будет F=1320+x 1 ×Dс j =1320+10×Dс j .

3 Отчет по пределам приведен на рис. 13. В нем показывается, в каких пределах могут изменяться значения x j , вошедшие в оптимальное решение, при сохранении структуры оптимального решения. Кроме этого, для каждого типа продукции приводятся значения целевой функции, получаемые при подстановке в оптимальное решение значения нижнего предела выпуска изделий соответствующего типа при неизменных значениях выпуска остальных типов. Например, если при оптимальном решении х 1 =10, х 2 =0, х 3 =6, х 4 =0 положить х 1 =0 (нижний предел) при неизменных х 2 , х 3 и х 4 , то значение целевой функции будет равно 60×0+70×0+120×6+130×0=720.

Решим данную задачу графическим методом в табличном редакторе Microsoft Excel (рис. 1). Для построения ОДР, и линий уровня воспользуемся Мастером диаграмм . ОДР представляет собой многоугольник с вершинами в точках: (0;0), (0;6), (2;5), (4;3), (5;0).

При перемещении линии уровня в направлении вектора получаем оптимальное решение в точке с координатами (2;5).

Аналогичным образом можно решить данную задачу графическим методом в табличном редакторе OpenOffice.org Calc воспользовавшись пунктом меню Диаграмма .



Решение ЗЛП в Microsoft Excel и OpenOffice.org Calc с помощью встроенной функции Поиск решения

В табличном процессоре Microsoft Excel существует встроенная функция Поиск решения , с помощью которой можно решить задачу линейного программирования. Если данный модуль установлен, его можно запустить выбрав команду Сервис/Поиск решения (рис. 2). На экране появится диалоговое окно Поиск решения (рис. 3).

Р и с. 2. Р и с. 3.

Если такого пункта в меню Сервис не оказалось, следует загрузить соответствующую программу-надстройку. Для этого выберите команду Сервис/Надстройки (рис. 4) и в диалоговом окне Надстройки установите флажок в строке Поиск решения (рис. 5).

Разберем решение ЗЛП с помощью функции Поиск решения на примере задачи 1.

1. Создадим таблицу для ввода исходных данных: переменных, целевой функции, ограничений.

2. Введем начальные нулевые значения для и .

3. Зададим целевую функцию в ячейке D41 и ограничения в ячейках Е39, Е40 и E41 (рис. 6).

Р и с. 4. Р и с. 5.

4. Выберем команду Сервис/Поиск решения , в открывшемся окне Поиск решения установим целевую ячейку D41, зададим условие отыскания максимального значения (рис. 7).

5. В поле Изменяя ячейки установим ссылку на ячейки С40 и С41, которые будут изменены (можно ввести адреса или имена ячеек с клавиатуры или указать диапазон ячеек на рабочем листе с помощью мыши). При щелчке на кнопке Предположить автоматически выделяются ячейки, на которые есть прямая или косвенная ссылка в формуле целевой ячейки (рис. 7).


6. Определим ограничения, для этого щелчком по кнопке Добавить откроем диалоговое окно Добавление ограничения . Введем ограничения для ячеек E39, E40, E41. Ограничения можно задать как для изменяемых ячеек, так и для целевой ячейки, а также для других ячеек, прямо или косвенно присутствующих в модели (рис. 8, 9).

Р и с. 8. Р и с. 9.

7. Щелчком на кнопке Параметры откроем диалоговое окно Параметры поиска решения . В данном окне выберем линейную модель и неотрицательные значения (неотрицательные значения для ячеек С40 и С41 можно было также установить при определении ограничений). Подробнее узнать о задаваемых параметрах можно щелкнув на кнопке Справка (рис. 10).

8. После того как все параметры и ограничения заданы, запускаем поиск решения, щелкнув на кнопке Выполнить (рис. 9). По мере того как идет поиск, отдельные его шаги отражаются в строке состояния. Когда поиск будет закончен, в таблицу будут внесены новые значения и на экране появится диалоговое окно Результаты поиска решения , сообщающие о завершении операции (рис. 11).

Решение найдено. Все ограничения и условия оптимальности выполнены. Сохраним найденное решение. В этом случае таблица будет обновлена. В случае необходимости всегда можно будет восстановить исходные данные с помощью отчета. Для выбора типа отчета достаточно выделить название нужного отчета в списке Тип отчета (или несколько названий, удерживая нажатой клавишу Сtrl ). Они будут вставлены на отдельных листах в рабочую книгу перед листом с исходными данными.

Предлагаемые отчеты содержат следующую информацию:

отчет Результаты содержит сведения о начальных и текущих значениях целевой ячейки и изменяемых ячеек, а также о соответствии значений заданным ограничениям;

отчет Устойчивость отражает найденный результат, а также нижние и верхние предельные значения для изменяемых ячеек;

отчет Пределы показывает зависимость решений от изменения формулы или ограничений.

Если планируется использовать созданную модель в дальнейшем, найденное решение можно сохранить как сценарий. Для этого в диалоговом окне Результаты поиска решения необходимо щелкнуть на кнопке Сохранить сценарий .

Аналогично Поиск решения осуществляется в OpenOffice.org Calc.

Задание

1. Решить задачи 2 и 3 графическим методом.

2. Решить задачи 2 и 3 в редакторе Microsoft Excel или OpenOffice.org Calc используя встроенную функцию Поиск решения .

3. Сравнить и проанализировать полученные результаты.

4. Ответить на контрольные вопросы.

5. Оформить отчет.

Задача 2. Фармацевтическая фирма Ozark ежедневно производит не менее 800 фунтов некой пищевой добавки – смеси кукурузной и соевой муки, состав которой представлен в таблице 2.

Таблица 2

Диетологи требуют, чтобы в пищевой добавке было не менее 30% белка и не более 5% клетчатки. Фирма Ozark хочет определить рецептуру смеси минимальной стоимости с учетом требований диетологов.

Задача 3. Предприятие, специализирующееся на производстве трикотажного полотна двух видов, использует для своего производства четыре вида сырья (шерстяную, хлопковую, вискозную, и акриловую нити), запасы которого на планируемый период составляют соответственно 80, 80, 260 и 410 бобин. В приведенной ниже таблице даны технологические коэффициенты, т.е. расход каждого вида сырья на производство одного метра каждого вида трикотажа.

Таблица 3

Прибыль от реализации 1м трикотажного полотна первого вида составляет 2 у.е., а трикотажного полотна второго вида 3 у.е. Необходимо определить оптимальный план выпуска трикотажного полотна первого и второго вида, чтобы обеспечить максимальную прибыль от их реализации.

Контрольные вопросы

1. Что означает составить математическую модель ЗЛП?

2. Из каких этапов состоит графический метод решения ЗЛП?

3. Какова геометрическая интерпретация решения системы линейных неравенств с двумя переменными?

4. Как определяется направление наискорейшего возрастания целевой функции?

5. Какое решение называется оптимальным решением ЗЛП?

6. В каком случае ЗЛП имеет множество решений?

7. При каких условиях ЗЛП может быть неразрешима?

8. Как установить модуль Поиск решения ?

9. Для чего предназначена кнопка Предположить в окне Поиск решения ?

10. Какие типы отчетов можно получить при решении ЗЛП с помощью встроенной функции Поиск решения ?

Лабораторная работа №2

Симплексный метод. Задача определения оптимального плана выпуска продукции. Использование встроенных функций редакторов Microsoft Excel и OpenOffice.org Calc для построения математической модели и решения ЗЛП.

Цель лабораторного занятия:

Приобретение навыков решения ЗЛП симплекс-методом. Освоение приемов записи математической модели ЗЛП с большим количеством неизвестных в табличных редакторах Microsoft Excel и OpenOffice.org Calc с помощью встроенной функций СУММПРОИЗВ. Приобретение навыков решения ЗЛП с большим количеством неизвестных с помощью функции Поиск решения .

Задачи лабораторного занятия:

1. Освоение симплекс-метода решения ЗЛП.

2. Построение математической модели задачи в табличных редакторах Microsoft Excel и OpenOffice.org Calc с помощью встроенной функций СУММПРОИЗВ.

3. Нахождение максимума (минимума) целевой функции с помощью команды Поиск решения .

4. Анализ полученных результатов.

5. Оформление отчета.

1. Краткие теоретические сведения.

2. Решение ЗЛП симплекс методом без использования табличных редакторов.

3. Решение ЗЛП на определение оптимального плана выпуска продукции в Microsoft Excel и OpenOffice.org Calc с помощью встроенной функции Поиск решения .

4. Задание.

5. Контрольные вопросы.

Краткие теоретические сведения

В основу симплекс-метода (симплексного метода) легла идея последовательного улучшения решения.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений (называемой первоначальной) к соседней, в которой линейная целевая функция принимает лучшее или, по крайней мере, не худшее значение. Этот процесс осуществляется до тех пор, пока не будет найдено оптимальное решение – вершина, где достигается оптимальное значение целевой функции (если задача имеет конечный оптимум).

Реализация симплекс-метода предусматривает содержание трех основных элементов:

1. Определение какого-либо первоначального допустимого базисного решения задачи (базисное решение называется допустимым, если значения, входящих в него переменных неотрицательны);

2. Правила перехода к лучшему (точнее, не худшему) решению;

3. Критерий проверки оптимальности найденного решения.

Для использования симплексного метода задача линейного программирования должна быть приведена к каноническому виду, т.е. система ограничений должна быть представлена в виде уравнений.

Практические расчеты при решении прикладных задач симплексным методом выполняются в настоящее время с помощью компьютерных программ, таких как табличный процессор Microsoft Excel, пакеты прикладных программ MathCAD, Math Lab и др. Однако, если расчеты осуществляются вручную, удобно использовать так называемые симплексные таблицы.

Цель: научиться решать задачи линейного программирования в Excel с помощью надстройки «Поиск решения».

Краткие теоретические сведения

Оптимизационные задачи находят широкое применение в различных областях практической деятельности: при организации работы транспортных систем, в управлении промышленными предприятиями, при составлении проектов сложных систем. Многие распространенные классы задач системного анализа, в частности, задачи оптимального планирования, распределения различных ресурсов, управления запасами, календарного планирования, межотраслевого баланса укладываются в рамки моделей линейного программирования.

Постановка задачи линейного программирования (ЗЛП).

Имеется множество переменных X= (x 1 , х 2 ,..., х n). Целевая функция линейно зависит от управляемых параметров:

Имеются ограничения, которые представляют собой линейные формы

где (2)

Требуется определить максимум (минимум) линейной функции

при условии, что точка (х 1 , х 2 ,..., х n) принадлежит некоторому множеству D, которое определяется системой линейных неравенств

(4)

Любое множество значений (х 1 *, х 2 *,..., х n *), которое удовлетворяет системе неравенств (4) задачи линейного программирования, является допустимым решением данной задачи. Если при этом выполняется неравенство

c 1 х 1 o + c 2 х 2 o +..+ c n х n o ≥ c 1 х 1 + c 2 х 2 +..+ c n х n

для всего множества значений x 1 , х 2 ,..., х n , то значение х 1 o ..х n o является оптимальным решением задачи линейного программирования.

Пример построения математической модели и решения ЗЛП.

Задача. Требуется определить, в каком количестве надо выпускать продукцию четырех типов A, B, C иD, для изготовления которой требуются ресурсы трех видов: трудовые, сырье и финансы. Количество ресурса каждого вида, необходимое для выпуска единицы продукции данного типа, называется нормой расхода. Нормы расхода, а также прибыль, получаемая от реализации единицы каждого типа продукции, приведены в таблице1. Там же приведено наличие располагаемого ресурса.

Таблица1.

Ресурс

A

B

C

D

знак

наличие

трудовые

Составим математическую модель, для чего введем следующие обозначения:

x i - количество выпускаемой продукции i-го типа, i = 1,2,3,4

b j – количество располагаемого ресурса j-го вида, j = 1,2,3

a ji – норма расхода j-го ресурса для выпуска i-ой продукции

c i – прибыль от реализации единицы продукции i-го типа.

Как видно из таблицы 1, для выпуска единицы продукции A требуется 6 единиц сырья, значит, для выпуска всей продукции A требуется 6x 1 единиц сырья, где x 1 - количество выпускаемой продукции A . С учетом того, что для других видов продукции зависимости аналогичны, ограничение по сырью будет иметь вид:

6x 1 + 5x 2 + 4x 3 + 3x 4 ≤ 110

В этом ограничении левая часть равна величине требуемого ресурса, а правая часть показывает количество имеющегося ресурса.

Аналогично можно составить ограничения для других видов ресурсов и написать зависимость для целевой функции. Тогда математическая модель задачи будет иметь вид:

x 1 + x 2 + x 3 + x 4 ≤ 16

6x 1 + 5x 2 + 4x 3 + 3x 4 ≤ 110

4x 1 + 6x 2 + 10x 3 + 13x 4 ≤ 100

x i ≥ 0, i=1,2,3,4

1. Для ввода условий задачи создадим форму в Excel (рис.1). В ячейках B3:E3 будут отображаться вычисленные значения x i .


рис.1. Форма для ввода условий задачи

2. Введем коэффициенты целевой функции и ограничений в форму. Из математической модели введем зависимости. Введенные данные отображены на рис.2.


рис.2. Исходные данные задачи

В ячейке F6 записана формула целевой функции, в F9-F11- левые части ограничений из математической модели. На рис. 3 отображен режим представления формул. Перейти к данному режиму можно с помощью последовательности действий: нажмите кнопку Microsoft Office , щелкните Параметры Excel, откройте вкладку Дополнительно и установите флажок Показывать формулы, а не их значения.


рис.3. Режим представления формул.

3. Загрузим надстройку поиск решения Данные Анализ Поиск решения .

4. В поле Установить целевую ячейку введем ссылку на целевую ячейку, для чего установим курсор в поле и щелкнем левой кнопкой мыши по ячейке F6.

5. Выберем направление поиска, установив флажок равной максимальному значению.

6. Установим курсор в поле Изменяя ячейки и введем с помощью мыши имена изменяемых ячеек B3:E3. В этих ячейках в результате поиска решения будет выведено решение – значения переменных x i ., при которых целевая функция имеет максимальное значение при заданных ограничениях.

7. Введем ограничения на искомые переменные: x i ≥ 0 (нижняя граница по умолчанию равна 0, количество выпускаемой продукции не может быть отрицательным). Так же введем ограничения на ресурсы (н е может быть использовано больше ресурсов, чем их запасы). Щелкнем по кнопке Добавить , в появившемся окне Добавление ограничения в левом поле с помощью мыши введем ссылку на ячейку B3, из раскрывающегося списка выберем знак ≥, в правом поле щелкнем мышью по ячейкеB4 (рис.4). Аналогично введем остальные ограничения.


Рис.4. Окно добавления ограничений.

На рисунке 5 показано заполненное окно Поиск решения.


Рис.5 Заполненное окно Поиск решения

8. Далее нажимаем на кнопку Выполнить. Появляется диалоговое окно Результаты поиска решения (рис.6). Решение найдено. Все ограничения и условия оптимальности выполнены. Сохраняем найденное решение. В этом окне также можно получить три вида отчетов: по результатам, устойчивости и пределам, отчеты формируются в новых рабочих листах.


рис.6. Окно Результаты поиска решения

Результаты оптимального решения задачи приведены в таблице (рис.7).


рис.7. Результаты оптимального решения

Таким образом, получилось оптимальное решение (10;0;6;0), т.е. целесообразно выпускать 10 единиц продукции А и 6 единиц продукции С. Максимальная прибыль равна 1320 денежным единицам, при этом используются все трудовые и финансовые ресурсы, 84 единиц сырья, в запасе остается 26 единиц сырья.

Задания для лабораторной работы.

Составить математическую модель и решить полученную задачу линейного программирования в Excel с помощью надстройки Поиск решения.

Для перевозки грузов используются машины типов А и Б. Грузоподъемность машин обоих типов одинаковая и равна h т. За одну ходку машина А расходует а 11 кг смазочных материалов и а 12 л горючего, машина Б - а 21 кг смазочных материалов иа 22 л горючего. На базе имеется d 1 кг смазочных материалов и d 2 л горючего. Прибыль от перевозки одной машины А составляет с 1 руб., машины Б - с 2 руб. Необходимо перевезти H т груза (исходные данные приведены в нижеследующей таблице).

Сколько надо использовать машин обоих типов, чтобы доход от перевозки груза был максимальным.

№ варианта

Инструкция по выполнению лабораторной работы.

  1. Изучить теоретический материал.
  2. Выполнить приведенный пример.
  3. Выбрать свой вариант по последней цифре.
  4. Составить математическую модель задачи.
  5. Найти оптимальное решение с помощью Поиска решения.
  6. Сделать выводы по полученным решениям, сформировать отчеты по результатам решения, устойчивости и пределам.
  7. Создать отчет по лабораторной работе.
  1. Титульный лист.
  2. Словесная постановка задачи.
  3. Математическая формулировка задачи.
  4. Заполненное окно Поиск решения
  5. Результаты поиска решения (таблица).
  6. Выводы по полученным решениям.

Список источников

  1. Гельман В.Я. Решение математических задач средствами Excel: Практикум. – СПб.:Питер, 2003
  2. Курицкий Б.Я. Поиск оптимальных решений средствами Excel. – СПб.: BHV-Санкт-Петербург, 1997
  3. Пазюк К.Т. Математические методы и модели в экономике. – Хабаровск: Издательство ХГТУ, 2002
  4. Джон Уокенбах. MS OfficeExcel 2007 - Библия пользователя, Издатель: Вильямс, 2008