Аналоговые, дискретные и цифровые сигналы. Виды сигналов

Сегодня попытаемся разобраться, что такое аналоговый и цифровой сигналы? Их преимущества и недостатки. Не будем кидаться различными научными терминами и определениями, а попытаемся разобраться в ситуации на пальцах.

Что такое аналоговый сигнал?

Аналоговый сигнал основан на аналогии электрического сигнала (значений тока и напряжения) значению исходного сигнала (цвету пикселя, частоте и амплитуде звука и т.п). Т.е. определенные значения тока и напряжения соответствуют передаче определенного цвета пикселя или звукового сигнала.

Приведу пример на аналоговом видеосигнале.

Напряжение на проводе 5 вольт соответствует синему цвету, 6 вольт – зеленому, 7 вольт красному.

Для того чтобы на экране появились красные, синие и зеленые полосы нужно поочередно подавать на кабель напряжения 5, 6, 7 вольт. Чем быстрее мы проводим смену напряжений, тем тоньше полоски получаются у нас на мониторе. Сократив интервал между сменой напряжений до минимума, мы получим уже не полоски, а чередующиеся друг за другом цветные точки.

Важной особенностью аналогового сигнала является то обстоятельство, что он передается строго от передатчика к приемнику (например, от антенны к телевизору), обратной связи нет. Поэтому если в передачу сигнала вмешается помеха (например, вместо шести вольт придет четыре), цвет пикселя исказится, и на экране появится рябь.
Аналоговый сигнал непрерывен.
Что такое цифровой сигнал?

Передача данных осуществляется также с помощью электрического сигнала, но значений этих сигналов всего два и они соответствуют 0 и 1. Т.е. по проводам передается последовательность из нулей и единиц. Примерно так: 01010001001 и т. д. Для того чтобы приемное устройство (например, телевизор) не запутался в передаваемых данных, цифры передаются пачками. Это происходит примерно так: 10100010 10101010 10100000 10111110. Каждая такая пачка несет какую-нибудь информацию, например - цвет пикселя. Важной особенностью цифрового сигнала, является то, что передающие и принимающее устройство могут общаться между собой и исправлять друг за другом ошибки, которые могут возникнуть при передаче.

Примеры передачи цифрового и аналогового сигналов

Для цифрового сигнала передача происходит примерно так:

  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу!
  • Видеомагнитофон: Зеленый!
  • Телевизор: Ага, понял! Рисую зеленый.
  • Телевизор: Прошу подтвердить, что цвет красный.
  • Видеомагнитофон: подтверждаю.
  • Телевизор: Ок! рисую.

Передача для аналогового сигнала:

  • Видеомагнитофон: Эй, телевизор, цвет пикселя с координатами 120х300 - зеленый.
  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу! Блин, нарисую синий.
  • Видеомагнитофон: Следующий цвет красный!
  • Помеха: БАХ! БУМ!
  • Телевизор: Красный вроде! Рисую.
  • Видеомагнитофон: Лопата!
  • Помеха: ПШШШШШШ!
  • Телевизор: ?!. Надо что-то рисовать?! Пусть будет лопата!

Преимущества и недостатки цифрового и аналогового сигналов

Из вышесказанного можно сделать вывод, что при прочих равных условиях качество передачи информации с помощью цифры будет выше, чем при аналоговом представлении сигнала. В то же время при хорошей помехозащищенности две технологии могут конкурировать на равных.

Сегодня попытаемся разобраться, что такое аналоговый и цифровой сигналы? Их преимущества и недостатки. Не будем кидаться различными научными терминами и определениями, а попытаемся разобраться в ситуации на пальцах.

Что такое аналоговый сигнал?

Аналоговый сигнал основан на аналогии электрического сигнала (значений тока и напряжения) значению исходного сигнала (цвету пикселя, частоте и амплитуде звука и т.п). Т.е. определенные значения тока и напряжения соответствуют передаче определенного цвета пикселя или звукового сигнала.

Приведу пример на аналоговом видеосигнале.

Напряжение на проводе 5 вольт соответствует синему цвету, 6 вольт – зеленому, 7 вольт красному.

Для того чтобы на экране появились красные, синие и зеленые полосы нужно поочередно подавать на кабель напряжения 5, 6, 7 вольт. Чем быстрее мы проводим смену напряжений, тем тоньше полоски получаются у нас на мониторе. Сократив интервал между сменой напряжений до минимума, мы получим уже не полоски, а чередующиеся друг за другом цветные точки.

Важной особенностью аналогового сигнала является то обстоятельство, что он передается строго от передатчика к приемнику (например, от антенны к телевизору), обратной связи нет. Поэтому если в передачу сигнала вмешается помеха (например, вместо шести вольт придет четыре), цвет пикселя исказится, и на экране появится рябь.
Аналоговый сигнал непрерывен.
Что такое цифровой сигнал?

Передача данных осуществляется также с помощью электрического сигнала, но значений этих сигналов всего два и они соответствуют 0 и 1. Т.е. по проводам передается последовательность из нулей и единиц. Примерно так: 01010001001 и т. д. Для того чтобы приемное устройство (например, телевизор) не запутался в передаваемых данных, цифры передаются пачками. Это происходит примерно так: 10100010 10101010 10100000 10111110. Каждая такая пачка несет какую-нибудь информацию, например - цвет пикселя. Важной особенностью цифрового сигнала, является то, что передающие и принимающее устройство могут общаться между собой и исправлять друг за другом ошибки, которые могут возникнуть при передаче.

Примеры передачи цифрового и аналогового сигналов

Для цифрового сигнала передача происходит примерно так:

  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу!
  • Видеомагнитофон: Зеленый!
  • Телевизор: Ага, понял! Рисую зеленый.
  • Телевизор: Прошу подтвердить, что цвет красный.
  • Видеомагнитофон: подтверждаю.
  • Телевизор: Ок! рисую.

Передача для аналогового сигнала:

  • Видеомагнитофон: Эй, телевизор, цвет пикселя с координатами 120х300 - зеленый.
  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу! Блин, нарисую синий.
  • Видеомагнитофон: Следующий цвет красный!
  • Помеха: БАХ! БУМ!
  • Телевизор: Красный вроде! Рисую.
  • Видеомагнитофон: Лопата!
  • Помеха: ПШШШШШШ!
  • Телевизор: ?!. Надо что-то рисовать?! Пусть будет лопата!

Преимущества и недостатки цифрового и аналогового сигналов

Из вышесказанного можно сделать вывод, что при прочих равных условиях качество передачи информации с помощью цифры будет выше, чем при аналоговом представлении сигнала. В то же время при хорошей помехозащищенности две технологии могут конкурировать на равных.

Любой сигнал, будь-то аналоговый или цифровой, представляет собой электромагнитные колебания, распространяющиеся с определенной частотой. В зависимости от того, какой сигнал распространяется устройство, принимающее данный сигнал определяет, какое изображение выводить на экран, соответственно, со звуковым сопровождением.

К примеру, телевизионная вышка или радиостанция может передавать и аналоговый и цифровой сигналы. Звук передается в аналоговой форме, и уже через приемное устройство преобразуется в электромагнитные колебания. Как уже говорилось, колебания распространяются с определенной частотой. Чем выше частота звука, тем выше колебания, в результате, получаем на выходе более громкое звучание голоса.

Общими словами, аналоговый сигнал распространяется непрерывно, а цифровой сигнал - дискретно (прерывисто), т.е. амплитуда колебаний принимает определенные значения в единицу времени.

Если продолжить пример звукового аналогового сигнала, то получим процесс, при котором электромагнитные волны распространяются с помощью передатчика (антенны). Т.к. распространение аналогового сигнала происходит постоянно, то колебания суммируются, и на выходе возникает несущая частота, которая является основной, т.е. на неё происходит настройка приемника.

В самом приемнике происходит отделение данной частоты от других колебаний, которые преобразуются в звук.

Недостатками передачи информации с помощью аналогового сигнала очевидны:

  • Возникает большое количество помех;
  • Передается больше лишней информации;
  • Безопасность передачи сигнала

Если в радиовещании передача информации с помощью аналогового сигнала происходит менее заметно, то в телевидении, вопрос перехода на цифровую передачу крайне важен.

Основными преимуществами цифрового сигнала перед аналоговым являются:

  • Более высокий уровень защиты. Безопасность передачи цифрового сигнала основана на том, что «цифра» передается в зашифрованном виде;
  • Легкость приема сигнала. Цифровой сигнал можно принимать, находясь на любом расстоянии от местожительства;
  • Цифровое вещание способно обеспечить огромное количество каналов. Именно эта возможность обеспечивает поклонников цифрового телевидения большим количеством телеканалов для просмотра фильмов и передач;
  • Качество передачи находится на несколько порядков выше, чем при аналоговом вещании. Цифровой сигнал обеспечивает фильтрацию принимаемых данных, а также имеется возможность восстанавливать исходную информацию.

Соответственно, для преобразования аналогового сигнала в цифровой, и наоборот используются специальные устройства.

  • Устройство, которое преобразует аналоговый сигнал в цифровой сигнал, называется аналого-цифровым преобразователем (АЦП);
  • Устройство, преобразующее цифровой сигнал в аналоговый называется цифро-аналоговым преобразователем (ЦАП).

Соответственно, АЦП установлен в передатчике, а ЦАП установлен в приемнике и преобразет дискретный сигнал в аналоговый, соответствующий голосу.

Почему цифровой сигнал является более защищенным?

Передача цифрового сигнала осуществляется в зашифрованном виде и цифро-аналоговое устройство должно иметь код для расшифровки. АЦП может передавать и цифровой адрес приемника. Если даже сигнал будет перехвачен, то полностью расшифровать его будет невозможно из-за отсутствия части кода. Данный свойство цифровой передачи широко используется в мобильной связи.

Таким образом, основное различие между аналоговым и цифровым сигналом заключается в различной структуре передаваемого сигнала. Аналоговые сигналы - непрерывный поток колебаний с изменяющимися амплитудой и частотой.

Цифровой сигнал - дискретные (прерывистые) колебания, значения которых зависят от передающей среды.

Иногда у потребителей возникает вопрос, как передается сигнал в телевидении.

В телевидении перед передачей сигнала в цифровом виде, аналоговый сигнал подлежит оцифровке. После этого, необходимо выбрать, в какой среде будет происходить передача: медный кабель, эфир, оптоволоконный кабель.

Например, многие пользователи уверены, что кабельное телевидение - это только цифровая передача данных. Это не так. Кабельное телевидение - это и аналоговый и цифровой вид передачи сигнала.

Лекция № 1

«Аналоговые, дискретные и цифровые сигналы

Двумя самыми фундаментальными понятиями в данном курсе являются понятия сигнала и системы.

Под сигналом понимается физический процесс (например, изменяющееся во времени напряжение), отображающий некоторую информацию или сообщение. Математически сигнал описывается функцией определенного типа.

Одномерные сигналы описываются вещественной или комплексной функцией , определенной на интервале вещественной оси (обычно – оси времени) . Примером одномерного сигнала может служить электрический ток в проводе микрофона, несущий информацию о воспринимаемом звуке.

Сигнал x (t ) называется ограниченным если существует положительное число A , такое, что для любого t .

Энергией сигнала x (t ) называется величина

,(1.1)

Если , то говорят, что сигнал x (t ) имеет ограниченную энергию. Сигналы с ограниченной энергией обладают свойством

Если сигнал имеет ограниченную энергию, то он ограничен.

Мощностью сигнала x (t ) называется величина

,(1.2)

Если , то говорят, что сигнал x (t ) имеет ограниченную мощность. Сигналы с ограниченной мощностьюмогут принимать ненулевые значения сколь угодно долго.

В реальной природе сигналов с неограниченной энергией и мощностью не существует. Большинство сигналов, существующих в реальной природе являются аналоговыми.

Аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией , причем сама функция и аргумент t могут принимать любые значения на некоторых интервалах . На рис. 1.1 а представлен пример аналогового сигнала, изменяющегося во времени по закону , где . Другой пример аналогового сигнала, показанный на рис 1.1б, изменяется во времени по закону .



Важным примером аналогового сигнала является сигнал, описываемый т.н. «единичной функцией» , которая описывается выражением

(1.3),

где.

График единичной функции представлен на рис.1.2.


Функцию 1(t ) можно рассматривать как предел семейства непрерывных функций 1(a , t ) при изменении параметра этого семейства a .

(1.4).

Семейство графиков 1(a , t ) при различных значениях a представлено на рис.1.3.


В этом случае функцию 1( t ) можно записать как

(1.5).

Обозначим производную от 1(a , t ) как d (a , t ).

(1.6).

Семейство графиков d (a , t ) представлено на рис.1.4.



Площадь под кривой d (a , t ) не зависит от a и всегда равна 1. Действительно

(1.7).

Функция

(1.8)

называется импульсной функцией Дирака или d - функцией. Значения d - функции равны нулю во всех точках, кроме t =0. При t =0 d -функция равна бесконечности, но так, что площадь под кривой d - функции равна 1. На рис.1.5 представлен график функции d (t ) и d (t - t ).


Отметим некоторые свойства d - функции:

1. (1.9).

Это следует из того, что только при t = t .

2. (1.10) .

В интеграле бесконечные пределы можно заменить конечными, но так, чтобы аргумент функции d (t - t ) обращался в нуль внутри этих пределов.

(1.11).

3. Преобразование Лапласа d -функции

(1.12).

В частности , при t =0

(1.13).

4. Преобразование Фурье d - функции. При p = j v из 1.13 получим

(1.14)

При t =0

(1.15),

т.е. спектр d - функции равен 1.

Аналоговый сигнал f (t ) называется периодическим если существует действительное число T , такое, что f (t + T )= f (t ) для любых t . При этом T называется периодом сигнала. Примером периодического сигнала может служить сигнал, представленный на рис.1.2а, причем T =1/ f . Другим примером периодического сигнала может служить последовательность d - функций, описываемая уравнением

(1.16)

график которой представлен на рис.1.6.


Дискретные сигналы отличаются от аналоговых тем, что их значения известны лишь в дискретные моменты времени.Дискретные сигналы описываются решетчатыми функциями – последовательностями – x д (nT ), где T = const – интервал (период) дискретизации, n =0,1,2,…. Сама функция x д (nT ) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчетами функции. Другим обозначением решетчатой функции x (nT ) является x (n ) или x n . На рис. 1.7а и 1.7б представлены примеры решетчатых функций и . Последовательность x (n ) может быть конечной или бесконечной, в зависимости от интервала определения функции.



Процесс преобразования аналогового сигнала в дискретный называется временная дискретизация. Математически процесс временной дискретизации можно описать как модуляцию входным аналоговым сигналом последовательности d - функций d T (t )

(1.17)

Процесс восстановления аналогового сигнала из дискретного называется временная экстраполяция.

Для дискретных последовательностей также вводятся понятия энергии и мощности. Энергией последовательности x (n ) называется величина

,(1.18)

Мощностью последовательности x (n ) называется величина

,(1.19)

Для дискретных последовательностей сохраняются те же закономерности, касающиеся ограничения мощности и энергии, что и для непрерывных сигналов.

Периодической называют последовательность x (nT ), удовлетворяющую условию x (nT )= x (nT + mNT ), где m и N – целые числа. При этом N называют периодом последовательности. Периодическую последовательность достаточно задать на интервале периода, например при .

Цифровые сигналы представляют собой дискретные сигналы, которые в дискретные моменты времени могут принимать лишь конечный ряд дискретных значений – уровней квантования. Процесс преобразования дискретного сигнала в цифровой называется квантованием по уровню. Цифровые сигналы описываются квантованными решетчатыми функциями x ц (nT ). Примеры цифровых сигналов представлены на рис. 1.8а и 1.8б.



Связь между решетчатой функцией x д (nT ) и квантованной решетчатой функцией x ц (nT ) определяется нелинейной функцией квантования x ц (nT )= F k (x д (nT )). Каждый из уровней квантования кодируется числом. Обычно для эих целей используется двоичное кодирование, так, что квантованные отсчеты x ц (nT ) кодируются двоичными числами с n разрядами. Число уровней квантования N и наименьшее число двоичных разрядов m , с помощью которых можно закодировать все эти уровни, связаны соотношением

,(1.20)

где int (x ) – наименьшее целое число, не меньшее x .

Т.о., квантование дискретных сигналов состоит в представлении отсчета сигнала x д (nT ) с помощью двоичного числа, содержащего m разрядов. В результате квантования отсчет представляется с ошибкой, которая называется ошибкой квантования

.(1.21)

Шаг квантования Q определяется весом младшего двоичного разряда результирующего числа

.(1.22)

Основными способами квантования являются усечение и округление.

Усечение до m -разрядного двоичного числа состоит в отбрасывании всех младших разрядов числа кроме n старших. При этом ошибка усечения . Для положительных чисел прилюбом способе кодирования . Для отрицательных чисел при использовании прямого кода ошибка усечения неотрицательна , а при использовании дополнительного кода эта ошибка неположительна . Таким образом, во всех случаях абсолютнок значение ошибки усечения не превосходит шага квантования:

.(1.23)

График функции усечения дополнительного кода представлен на рис.1.9, а прямого кода – на рис.1.10.




Округление отличается от усечения тем, что кроме отбрасывания младших разрядов числа модифицируется и m -й (младший неотбрасываемый ) разряд числа. Его модификация заключается в том, что он либо остается неизменным или увеличивается на единицу в зависимости от того, больше или меньше отбрасываемая часть числа величины . Округление можно практически выполнить путем прибавления единицы к ( m +1) – муразряду числа с последующим усечением полученного числа до n разрядов. Ошибка округления при всех способах кодирования лежит в пределах и, следовательно,

.(1.24)

График функции округления представлен на рис. 1.11.



Рассмотрение и использование различных сигналов предполагает возможность измерения значения этих сигналов в заданные моменты времени. Естественно возникает вопрос о достоверности (или наоборот, неопределенности) измерения значения сигналов. Этими вопросами занимается теория информации , основоположником которой является К.Шеннон. Основная идея теории информации состоит в том, что с информацией можно обращаться почти также, как с такими физическими величинами как масса и энергия.

Точность измерений мы обычно характеризуем числовыми значениями полученных при измерении или предполагаемых погрешностей. При этом используются понятия абсолютной и относительной погрешностей. Если измерительное устройство имеет диапазон измерения от x 1 до x 2 , с абсолютной погрешностью ± D , не зависящей от текущего значения x измеряемой величины, то получив результат измерения в виде x n мы записываем его как x n ± D и характеризуем относительной погрешностью .

Рассмотрение этих же самых действий с позиции теории информации носит несколько иной характер, отличающийся тем, что всем перечисленным понятиям придается вероятностный, статистический смысл, а итог проведенного измерения истолковывается как сокращение области неопределенности измеряемой величины. В теории информации тот факт, что измерительный прибор имеет диапазон измерения от x 1 до x 2 означает , что при использовании этого прибора могут бытьполучены показания только в пределах от x 1 до x 2 . Другими словами, вероятность получения отсчетов, меньших x 1 или больших x 2 , равна 0. Вероятность же получения отсчетв где-то в пределах от x 1 до x 2 равна 1.

Если предположить, что все результаты измерения в пределах от x 1 до x 2 равновероятны, т.е. плотность распределения вероятности для различных значений измеряемой величины вдоль всей шкалы прибора одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности вероятности p (x ).

Поскольку полная вероятность получить отсчет где-то в пределах от x 1 до x 2 равна 1, то под кривой должна быть заключена площадь, равная 1, а это значит, что

(1.25).

После проведения измерения получаем показание прибора, равное x n . Однако, вследствие погрешности прибора, равной ± D , мы не можем утверждать, что измеряемая величина точно равна x n . Поэтому мы записывает результат в виде x n ± D . Это означает, что действительное значение измеряемой величины x лежит где-то в пределах от x n - D до x n + D . С точки зрения теории информации результат нашего измерения состоит лишь в том, что область неопределенности сократилась до величины 2 D и характеризуется намного большей плотностью ве5роятности

(1.26).

Получение каой-либо информации об интересующей нас величине заключается, таким образом, в уменьшении неопределенности ее значения.

В качестве характеристики неопределенности значения некоторой случайной величины К.Шеннон ввел понятие энтропии величины x , которая вычисляется как

(1.27).

Единицы измерения энтропии зависят от выбора основания логарифма в приведенных выражениях. При использовании десятичных логарифмов энтропия измеряется в т.н. десятичных единицах или дитах . В случае же использования двоичных логарифмов энтропия выражается в двоичных единицах или битах .

В большинстве случаев неопределенность знания о значении сигнала определяется действием помех или шумов. Дезинформационное действие шума при передаче сигнала определяется энтропией шума как случайной величины. Если шум в вероятностном смысле не зависит от передаваемого сигнала, то независимо от статистики сигнала шуму можно приписывать определенную величину энтропии, которая и характеризует его дезинформационное действие. При этом анализ системы можно проводить раздельно для шума и сигнала, что резко упрощает решение этой задачи.

Теорема Шеннона о количестве информации . Если на вход канала передачи информации подается сигнал с энтропией H ( x ), а шум в канале имеет энтропию H( D ) , то количество информации на выходе канала определяется как

(1.28).

Если кроме основного канала передачи сигнала имеется дополнительный канал, то для исправления ошибок, возникших от шума с энтропией H (D ), по этому каналу необходтмо передать дополнительное количество информации, не меньшее чем

(1.29).

Эти данные можно так закодировать, что будет возможно скорректировать все ошибки, вызванные шумом, за исключением произвольно малой доли этих ошибок.

В нашем случае, для равномерно распределенной случайной величины, энтропия определяется как

(1.30),

а оставшаяся или условная энтропия результата измерения после получения отсчета x n равна

(1.31).

Отсюда полученное количество информации равное разности исходной и оставшейся энтропии равно

(1.32).

При анализе систем с цифровыми сигналами ошибки квантования рассматриваются как стационарный случайный процесс с равномерным распределением вероятности по диапазону распределения ошибки квантования. На рис. 1.12а, б и в приведены плотности вероятности ошибки квантования при округлении дополнительного кода, прямого кода и усечении соответственно.



Очевидно, что квантование является нелинейной операцией. Однако, при анализе используется линейная модель квантования сигналов, представленная на рис. 1.13.

m – разрядный цифровой сигнал, e (nT ) – ошибка квантования.

Вероятностные оценки ошибок квантования делаются с помощью вычисления математического ожидания

(1.33)

и дисперсии

(1.34),

где p e – плотность вероятности ошибки. Для случаев округления и усечения будем иметь

(1.35),

(1.36).

Временная дискретизация и квантование по уровню сигналов являются неотъемлемыми особенностями всех микропроцессорных систем управления, определяемыми ограниченным быстродействием и конечной разрядностью используемых микропроцессоров.

Аналоговые, дискретные и цифровые сигналы

ВВЕДЕНИЕ В ЦИФРОВУЮ ОБРАБОТКУ СИГНАЛОВ

Цифровая обработка сигналов (ЦОС или DSP - digital signal processing) является одной из новейших и самых мощных технологий, которая активно внедряется в широкий круг областей науки и техники, таких как коммуникации, метеорология, радиолокация и гидролокация, медицинская визуализация изображений, цифровое аудио- и телевизионное вещание, разведка нефтяных и газовых месторождений и др. Можно сказать, что происходит повсеместное и глубокое проникновение технологий цифровой обработки сигналов во все сферы деятельности человечества. Сегодня технология ЦОС относится к числу базовых знаний, которые необходимы ученым и инженерам всех отраслей без исключения.

Сигналы

Что такое сигнал? В наиболее общей формулировке это зависимость одной величины от другой. Т.е., с математической точки зрения сигнал является функцией. Чаще всего рассматриваются зависимости от времени. Физическая природа сигнала может быть различной. Очень часто это электрическое напряжение, реже – ток.

Формы представления сигнала :

1. временная;

2. спектральная (в частотной области).

Стоимость цифровой обработки данных меньше аналоговой и продолжает снижаться, а производительность вычислительных операций непрерывно возрастает. Немаловажным является и то, что системы ЦОС отличаются высокой гибкостью. Их можно дополнять новыми программами и перепрограммировать на выполнение различных операций без изменения оборудования. Поэтому интерес к научным и к прикладным вопросам цифровой обработки сигналов возрастает во всех отраслях науки и техники.

ПРЕДИСЛОВИЕ К ЦИФРОВОЙ ОБРАБОТКЕ СИГНАЛОВ

Дискретные сигналы

Сущность цифровой обработки состоит в том, что физический сигнал (напряжение, ток и др.) преобразуется в последовательность чисел , которая затем подвергается математическим преобразованиям в ВУ.

Аналоговые, дискретные и цифровые сигналы

Исходный физический сигнал является непрерывной функцией времени. Такие сигналы, определенные во все моменты t, называются аналоговыми .

Какой сигнал называется цифровым? Рассмотрим некоторый аналоговый сигнал (рис. 1.1 а). Он задан непрерывно на всем рассматриваемом временном интервале. Считается, что аналоговый сигнал абсолютно точен, если не учитывать погрешности при измерении.

Рис. 1.1 а) Аналоговый сигнал

Рис. 1.1 б) Дискретизированный сигнал


Рис. 1.1 в) Квантованный сигнал

Для того, чтобы получить цифровой сигнал, нужно провести две операции – дискретизацию и квантование . Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией, а результат такого преобразования - дискретным сигналом .Т. обр., дискретизация заключается в составлении выборки из аналогового сигнала (рис. 1.1 б), каждый элемент которой, называемый отсчетом , будет отстоять по времени от соседних отсчетов на некотором интервале Т , называемом интервалом дискретизации или (поскольку интервал дискретизации чаще неизменен) – периодом дискретизации . Величина, обратная периоду дискретизации называется частотой дискретизации и определяется как:

(1.1)

При обработке сигнала в вычислительном устройстве его отсчеты представляются в виде двоичных чисел, имеющих ограниченное число разрядов. Вследствие этого отсчеты могут принимать лишь конечное множество значений и, следовательно, при представлении сигнала неизбежно происходит его округление. Процесс преобразования отсчетов сигнала в числа называется квантованием . Возникающие при этом ошибки округления называются ошибками или шумами квантования . Т. обр., квантование – это приведение уровней дискретизированного сигнала к некоторой сетке (рис. 1.1 в), чаще обычным округлением в сторону большего. Дискретный во времени и квантованный по уровню сигнал и будет являться цифровым.

Условия, при которых возможно полное восстановление аналогового сигнала по его цифровому эквиваленту с сохранением всей исходно содержавшейся в сигнале информации, выражаются теоремами Найквиста, Котельникова, Шеннона, сущность которых практически одинакова. Для дискретизации аналогового сигнала с полным сохранением информации в его цифровом эквиваленте максимальные частоты в аналоговом сигнале должны быть не менее, чем вдвое меньше, чем частота дискретизации, то есть f max £ (1/2)f d , т.е. на одном периоде максимальной частоты должно быть минимум два отсчета. Если это условие нарушается, в цифровом сигнале возникает эффект маскирования (подмены) действительных частот более низкими частотами. При этом в цифровом сигнале вместо фактической регистрируется "кажущаяся" частота, а, следовательно, восстановление фактической частоты в аналоговом сигнале становится невозможным. Восстановленный сигнал будет выглядеть так, как если бы частоты, лежащие выше половины частоты дискретизации, отразились от частоты (1/2)f d в нижнюю часть спектра и наложились на частоты, уже присутствующие в этой части спектра. Этот эффект называется наложением спектров или алиасингом (aliasing). Наглядным примером алиасинга может служить иллюзия, довольно часто встречающаяся в кино – колесо автомобиля начинает вращаться против его движения, если между последовательными кадрами (аналог частоты дискретизации) колесо совершает более чем пол-оборота.

Преобразование сигнала в цифровую форму выполняется аналого-цифровыми преобразователями (АЦП). Как правило, они используют двоичную систему счисления с определенным числом разрядов в равномерной шкале. Увеличение числа разрядов повышает точность измерений и расширяет динамический диапазон измеряемых сигналов. Потерянная из-за недостатка разрядов АЦП информация невосстановима, и существуют лишь оценки возникающей погрешности «округления» отсчетов, например, через мощность шума, порождаемого ошибкой в последнем разряде АЦП. Для этого используется понятие отношения «сигнал/шум» - отношение мощности сигнала к мощности шума (в децибелах). Наиболее часто применяются 8-, 10-, 12-, 16-, 20- и 24-х разрядные АЦП. Каждый дополнительный разряд улучшает отношение сигнал/шум на 6 децибел. Однако увеличение количества разрядов снижает скорость дискретизации и увеличивает стоимость аппаратуры. Важным аспектом является также динамический диапазон, определяемый максимальным и минимальным значением сигнала.

Обработка цифровых сигналов выполняется либо специальными процессорами, либо на универсальных ЭВМ и компьютерах по специальным программам. Наиболее просты для рассмотрения линейные системы. Линейными называются системы, для которых имеет место принцип суперпозиции (отклик на сумму входных сигналов равен сумме откликов на каждый сигнал в отдельности) и однородность (изменение амплитуды входного сигнала вызывает пропорциональное изменение выходного сигнала).



Если входной сигнал x(t-t 0) порождает однозначный выходной сигнал y(t-t 0) при любом сдвиге t 0 , то систему называют инвариантной во времени . Ее свойства можно исследовать в любые произвольные моменты времени. Для описания линейной системы вводится специальный входной сигнал - единичный импульс (импульсная функция).

Единичный импульс (единичный отсчет) u 0 (n ) (рис. 1.2):

Рис. 1.2. Единичный импульс

В силу свойства суперпозиции и однородности любой входной сигнал можно представить в виде суммы таких импульсов, подаваемых в разные моменты времени и умноженных на соответствующие коэффициенты. Выходной сигнал системы в этом случае представляет собой сумму откликов на эти импульсы. Отклик на единичный импульс (импульс с единичной амплитудой) называют импульсной характеристикой системы h(n). Знание импульсной характеристики позволяет проанализировать прохождение через дискретную систему любого сигнала. Действительно, произвольный сигнал {x(n)} можно представить в виде линейной комбинации единичных отсчетов.