Практические схемы интеграторов на оу. Схемы на оу с конденсаторами в цепи обратной связи

Интегратор и дифференциатор - это две важные вычислительные схемы, которые используются на операционном усилителе.

Интегратор

Интегратор - схема, имеющая выходное напряжение, равное сумме его входных напряжений за последовательные промежутки времени.

В схеме интегратора входной сигнал Ein подается на инвертирующий входной зажим; неинвертирующий входной зажим заземлен. Входной сигнал формируется через входной резистор Rin. Интегратор аналогичен инвертирующему усилителю за исключением одной особенности: вместо резистора в цепи обратной связи у него имеется конденсатор. Этот конденсатор Cfb называется конденсатором цепи обратной связи.

Выходной сигнал инвертирующего усилителя формируется через резистор цепи обратной связи. А в интеграторе выходное напряжение Eout формируется через конденсатор цепи обратной связи. При подаче на схему входного сигнала конденсатор заряжается для формирования выхода. Именно конденсатор делает схему интегрирующей. Поэтому для понимания работы схемы интегратора нужно рассмотреть, как действует конденсатор.


Важным вопросом в схеме интегратора является то, за какое время произойдет заряжание конденсатора до определенной величины.

На практике достижимый уровень выходного напряжения ограничен - оно никогда не может превысить напряжение питания. При постоянной величине входного сигнала конденсатор зарядится до уровня напряжения питания, но не больше. В этот момент произойдет насыщение операционного усилителя. Разумеется, на практике величина входного сигнала обычно изменяется, пока будет достигнуто насыщение.

В электронных контрольно-измерительных приборах скорость заряжания конденсатора в интеграторе обычно регулируется изменением значения Rin или Сfb. Например, регулятор возврата в электронном контроллере часто изменяет величину сопротивления Rin.

Дифференциатор

Дифференциатор - тип операционного усилителя, действие которого прямо противоположно действию интегратора. Иными словами, при наличии изменяющегося входного напряжения в какой-то период времени в дифференциаторе образуется неизменное выходное напряжение.

В схеме дифференциатора входное напряжение Ein подается на инвертирующий зажим, неинвертирующий зажим заземлен. В действительности, и для интеграторов, и для дифференциаторов нет необходимости в заземлении неинвертирующего зажима - на него может подаваться напряжение. В таком случае напряжение на неинвертирующем зажиме будет служить опорным напряжением, и выходное напряжение будет соотноситься с ним. Выходное напряжение Eout формируется через резистор цепи обратной связи Rfb.


Так же как интегратор, дифференциатор напоминает инвертирующий усилитель. Основным отличием является то, что входное напряжение в дифференциаторе образуется через входной конденсатор Cin, а не через входной резистор. Действие дифференциатора основано на том, как конденсатор реагирует на изменение входного напряжения.

В дифференциаторе зависимость между током в конденсаторе и выходным напряжением дифференциатора прямая - то есть, выходное напряжение дифференциатора будет высоким при сильном токе, выходное напряжение низкое при слабом токе в конденсаторе.

Следовательно, выходное напряжение дифференциатора будет высоким, когда входное напряжение Ein изменяется быстро, и оно будет низким, когда Ein изменяется медленно. Разумеется, если Ein постоянно, независимо от уровня, выходное напряжение дифференциатора будет равно 0 В.

Поскольку дифференциатор образует неизменное выходное напряжение с уровнем, пропорциональным скорости изменения входного напряжения, он часто используется для формирования управляющего сигнала скорости изменения процесса в электронных контроллерах. При его использовании схема управления скоростью подает управляющий сигнал, который прямо связан со скоростью изменения переменного параметра процесса. Если переменный параметр процесса изменяется быстро, в контроллере образуется управляющий сигнал высокого уровня. Более слабые управляющие сигналы образуются при медленном изменении переменного параметра процесса.

Регуляторы скорости в электронных контроллерах обычно изменяют величину конденсатора в схеме дифференциатора. Изменение величины конденсатора влияет на уровень выходного напряжения, образующегося при данном входном напряжении. Поэтому в электронных контроллерах применяется регулировка скорости для варьирования «величины» управляющего воздействия, производимого для данного изменения переменного параметра процесса.

До сих пор рассматривались усилители, собираемые из отдельных дис­кретных компонентов – транзисторов, диодов, резисторов. При исполь­зовании технологии интегральных схем все эти необходимые дискретные компоненты могут быть сформированы в одной монолитной ИС. Именно по такой технологии в настоящее время изготавливаются операционные усилители (ОУ). Первоначально они были разработаны для выполнения определенных математических операций (отсюда название), но затем бы­стро нашли применение в самых различных электронных схемах.

Идеальный операционный усилитель - это идеальный усилитель с бесконечно большим коэффициентом усиления, бесконечно широкой по­лосой пропускания и совершенно плоской АЧХ, бесконечным входным со­противлением, нулевым выходным сопротивлением и полным отсутстви­ем дрейфа нуля. На практике операционный усилитель имеет следующие свойства:

1) очень высокий коэффициент усиления (свыше 50000);

2) очень широкую полосу пропускания и плоскую АЧХ;

3) очень высокое входное сопротивление;

4) очень низкое выходное сопротивление;

5) очень слабый дрейф нуля.

Рис. 31.1.

На рис. 31.1 показано условное обозначение операционного усилителя. ОУ имеет два входа: инвертирующий вход (-), сигнал на котором нахо­дится в противофазе с выходным сигналом, и неинвертирующий вход (+), сигнал на котором совпадает по фазе с выходным сигналом.

Применения

Диапазон применений ОУ исключительно широк. Он может использо­ваться в качестве инвертирующего, неинвертирующего, суммирующего и дифференциального усилителей, как повторитель напряжения, интегра­тор и компаратор. Внешние компоненты, подключаемые к ОУ, опреде­ляют его конкретное применение. Ниже рассматриваются некоторые из этих применений.

На рис. 31.2 показано применение ОУ в качестве инвертирующего уси­лителя. Поскольку ОУ обладает очень большим (почти бесконечным) коэффициентом усиления, то сигнал на его выходе вырабатывается при очень малом входном сигнале. Это означает, что инвертирующий вход ОУ (точку Р) можно считать виртуальной (мнимой) землей, т. е. точкой с практически нулевым потенциалом. Для получения коэффициента усиления ОУ требуемого уровня вводится очень глубокая отрицательная связь через резистор обратной связи R oc . Коэффициент усиления инвер­тирующего усилителя (рис. 31.2) можно рассчитать по формуле

Отрицательный знак указывает на инвертирование входного сигнала при его усилении.


Рис. 31.2.

Пример

Полагая R 1 = 1 кОм и R oc = 2,2 кОм, рассчитать коэффициент усиления и выходное напряжение инвертирующего усилителя, если на его вход подано на­пряжение 50 мВ.

Решение

Коэффициент усиления

Выходное напряжение = -2, 2 · 50 мВ = -110 мВ.

Суммирующий усилитель (рис. 31.3) вырабатывает выходное напряже­ние, величина которого пропорциональна сумме входных напряжений V 1 и V 2 . Для входного напряжения V 1 коэффициент усиления G V = - R oc / R 1 , а для входного напряжения V 2 G V = - R oc / R 1 .

Например, если R oc = R 1 = R 2 , то коэффициент усиления для обоих входов равен -5 кОм / 5 к0м = -1. Пусть V 1 = 1 В и V 2 = 2 В, тогда вклад в выходное напряжение, связанный с V 1 , составляет 1 · (-1) = -1 В, а вклад, связанный с V 2 , составляет 2 · (-1) = -2 В. Следовательно, полное выходное напряжение равно V вых = -1 - 2 = -3 В.

Пример 1

На входы суммирующего ОУ, показанного на рис. 31.4, подаются напряжения V 1 = 20 мВ и V 2 = -10 мВ. Рассчитайте выходное напряжение V вых .


Рис. 31.3.


Рис. 31.4.

Решение

Выходное напряжение для V 1 = -5/1 · 20 = -100 мВ.

Выходное напряжение для V 2 = -5/5 · (-10) = +10мВ.

Следовательно, полное выходное напряжение V вых = -100 + 10 = -90 мВ.

В этом случае операционный усилитель охвачен 100%-ной отрицательной обратной связью (рис. 31.5) и имеет результирующий коэффициент уси­ления, равный 1. Заметим, что выходной и входной сигналы повторителя напряжения совпадают по фазе.

Напряжение смещения

При нулевом входном сигнале выходной сигнал идеального ОУ равен ну­лю. На практике это не так: отличный от нуля сигнал (ток или напря­жение) присутствует на выходе ОУ даже при нулевом входном сигнале. Чтобы добиться нулевого выходного сигнала при нулевом входном, на вход ОУ подается входной ток смещения или напряжение смещения та­кой величины и полярности, чтобы выходной сигнал, соответствующий входному сигналу смещения, компенсировал исходный мешающий выход­ной сигнал.

Входной ток смещения обычно устанавливается с помощью дополни­тельного резистора R 2 , подключаемого к неинвертирующему входу ОУ, как показано на рис. 31.6.


Рис. 31.5. Повторитель напряже­ния. Рис. 31.6

Оптимальное сопротивление этого резистора определяется по формуле

Обычно, если коэффициент усиления больше четырех, номиналы рези­сторов R 2 и R 1 выбирают одинаковыми. Введение резистора R 2 не изме­няет коэффициент усиления инвертирующего усилителя, он по-прежнему остается равным - R oc / R 1 . Как мы увидим позже, в некоторых ИС преду­сматриваются выводы для установки нулевого напряжения на выходе ОУ.

Неинвертирующий усилитель

В этом случае входной сигнал подается на неинвертирующий вход ОУ, как показано на рис. 31.7.

Интегрирование является одной из основных математических операций, и ее электрическая реализация означает построение схемы, в которой скорость изменения выходного напряжения пропорциональна входному сигналу. В графической интерпретации выходное напряжение оказывается пропорциональным площади под кривой входного напряжения. Те или иные разновидности интеграторов встречатюся во многих аналоговых системах. Наиболее часто они применяются в активных фильтрах, а также в системах автоматического регулирования для интегрирования сигнала ошибки. Интегратор можно рассматривать как ФНЧ первого порядка, у которого наклон АЧХ составляет -20 дБ/декада. Две простейшие схемы интеграторов представлены на рис. 7.1.

Рис. 7.1. Основные схемы интеграторов: а) простой RC-интегратор, б) интегратор с ОУ.

У простого RC-интегратора, показанного на рис. 7.1 а, имеются два серьезных недостатка. Во-первых, он значительно ослабляет входной сигнал и, во-вторых, имеет высокое выходное сопротивление. В результате такая схема на практике применяется редко. Стандартный интегратор с ОУ, показанный на рис. 7.1 б, содержит входной резистор и конденсатор Си включенный в цепь обратной связи ОУ А. Ток, поступающий на инвертирующий вход ОУ, определяется сопротивлением резистора За счет большого собственного коэффициента усиления ОУ его инвер тирующий вход оказывается виртуальной землей. В результате входной ток определяется только входным напряжением и резистором Следо ватсльно, практически весь входной ток (с точностью до входною тока ОУ - прим. ред.) протекает через конденсатор заряжая его; при этом реализуется операция интегрирования.

Передаточная функция интегратора:

Диапазон рабочих частот:

нижияя частота:

верхняя частота:

где - коэффициент усиления ОУ, а - произведение коэффициента усиления на полосу пропускания.

Входное сопротивление схемы:

Скорость дрейфа выходного напряжения (наихудший случай):

из-за напряжения смещения и входного тока смещения :

из-за утечки через сопротивление

из-за входного дифференциального сопротивления ОУ :

Конечное значение выходного напряжения смещения:

Основной проблемой в аналоговых интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора Q токами утечки, входными токами смещения и входным напряжением смещения ОУ . Схема фактически интегрирует "неидеальности" ОУ и других элементов. Если не принять никаких мер, на выходе схемы появится большое непостоянное смещение, которое, в конечном счете, приводит к насыщению ОУ. Можно предложить три способа решения этой проблемы.

Если интегратор является частью большей схемы, охваченной общей обратной связью, например фильтра с переменными параметрами из гл. 6, то дрейф интегратора не вызывает особых осложнений, так как компенсируется общей обратной связью.

Если интегрируемый сигнал не содержит постоянной составляющей, то в цепь обратной связи ОУ можно специально включить резистор показанный на рис. 7.1. Этот резистор обеспечивает путь для входных токов смещения в обход конденсатора Си Такой прием используется только в случаях, когда нижняя частота спектра входных сигналов превышает 1 Гц, так как при меньших частотах понадобится слишком большой резистор Сопротивление должно быть с одной стороны достаточно малым, чтобы уменьшить выходное смещение до приемлемого уровня, а с другой - достаточно большим для того, чтобы схема работала как интегратор во всем диапазоне частот входного сигнала.

Если требуется интегрировать сигналы Постоянного тока, в цепь обратной связи можно ввести ключ сброса для периодического разряда конденсатора

Чтобы продемонстрировать величину возможного дрейфа, предположим, что используется КМОП-ОУ с периодической коррекцией дрейфа с конденсатором обратной связи и резистором . Для таких ОУ типичными значениями являются . При таких параметрах схемы скорость дрейфа выходного

напряжения составит 0,4 мВ/час. Для снижения дрейфа необходимо тщательно продумать монтаж и конструкцию интегратора, так как, кроме входного тока смещения инвертирующего входа интегратора, на работу схемы оказывают влияние и другие токи утечки. Рекомендуется предусмотреть охранные кольца с обеих сторон платы вокруг инвертирующего входа. Плату необходимо тщательно очистить. Чтобы достичь сверхмалых токов утечки при монтаже инвертирующего входа интегратора можно использовать изолирующие фторопластовые стойки.

Если для разряда конденсатора применяется аналоговый ключ, его собственный ток утечки должен быть меньше входного тока ОУ. Для уменьшения токов утечки можно использовать последовательное соединение полевых транзисторов или аналоговых ключей.

Идеальный интегратор имеет частотную характеристику с постоянной крутизной спада -20 дБ/декада во всем диапазоне частот. Характеристики реальных интеграторов отличаются от идеальных, что показано на рис. 7.2 для случая малых входных сигналов. Нижняя рабочая частота определяется либо конечным коэффициентом усиления ОУ, либо конечным значением сопротивления утечки Интегратор может оказаться неработоспособным на низких частотах из-за большого выходного дрейфа. Верхняя рабочая частота интегратора ограничена конечным произведением коэффициента усиления на ширину полосы пропускания ОУ. Чтобы схема работала как интегратор, спектр входного сигнала должен с определенным запасом лежать в рабочем диапазоне частот (например, в 10 раз выше нижней и ниже 1/10 верхней предельных частот).

Как было отмечено, верхний предел частотной характеристики интегратора ограничивается конечной шириной полосы пропускания ОУ, который создает дополнительный полюс на АЧХ на частоте, примерно равной , где - произведение коэффициента усиления на ширину полосы пропускания ОУ. Этот дополнительный полюс вызывает появление на высоких частотах погрешности фазового сдвига и коэффициента усиления. Один из способов коррекции этой погрешности состоит во включении небольшого конденсатора параллельно резистору для устранения дополнительного полюса. Учитывая, что значение выбирается из условия Добиться полной коррекции трудно, так как точное значение как правило, неизвестно; этим способом можно уменьшить погрешности примерно на порядок, но при слишком большом значении схема может возбудиться.

В случае больших входных сигналов в схеме появляются искажения, связанные с ограниченной скоростью нарастания выходного напряжения ОУ. Необходимо убедиться, что максимальная скорость изменения выходного напряжения интегратора не превышает скорости нарастания выходного напряжения ОУ, и не ограничивается величиной тока, которым

Рис. 7.2. Частотная характеристика интегратора для малых сигналов.

ОУ может заряжать емкостную нагрузку. Особенно это важно в быстродействующих схемах при больших емкостях конденсатора Q. Максимальная скорость изменения выходного напряжения ограничивается величиной где - максимальный выходной ТОК ОУ, - емкость нагрузки.

Рис. 7.3. Применение Т-образного соединения резисторов.

изолированы друг от друга, возможно, с применением защитных печатных дорожек. Сопротивления утечки и емкости, параллельные резисторам в, оказывают меньшее влияние, так как оба эти резистора могут иметь сравнительно небольшие сопротивления, в чем, собственно, и заключается преимущество Т-образного соединения. Отметим, что Т-образное соединение можно использовать и для получения больших эквивалентных сопротивлений резистора

Базовую схему интегратора легко видоизменить для интегрирования суммы нескольких сигналов, подаваемых на инвертирующий вход (рис. 7.4). Наибольшее число сигналов ограничивается суммарной проводимостью резисторов, присоединенных к инвертирующему входу; соответствующее эквивалентное сопротивление равно

Это значение подставляется вместо в расчетное соотношение для выходного напряжения смещения; из него следует, что увеличение количества входов увеличивает дрейф выходного напряжения.

Для интегрирования разности двух сигналов применяется схема, показанная на рис. 7.5. Она очень похожа на схему дифференциального усилителя, но в ней два резистора заменены на два конденсатора. В схеме требуется тщательное согласование резисторов и конденсаторов, иначе мы получим плохой коэффициент ослабления синфазного сигнала (КОСС). Значение КОСС (комплексное - прим. ред.) при рассогласовании элементов определяется выражением:

где - разность постоянных времени Дрейф выходного напряжения описывается выражением:

Рис. 7.4. Суммирующий интегратор

Рис. 7.5. Интегрирование разности двух входных сигналов.

Рис. 7.6. Дифференциальный интегратор с высоким КОСС.

Если требуется дифференциальный интегратор с высоким КОСС, к суммирующему интегратору подключается еще один ОУ, действующий как инвертор (рис. 7.6). КОСС этой схемы намного выше, так как он зависит только от согласования резисторов, а не конденсаторов.

Для получения неинвертирующего интегратора можно либо заземлить инвертирующий вход дифференциального интегратора (рис. 7.5), либо включить после интегратора инвертирующий каскад. Инвертор лучше включать после интегратора для сохранения динамического диапазона (по скорости нарастания выходного напряжения - прим. ред.), поскольку интегратор ослабляет высокочастотные сигналы.

Исключив входной резистор (рис. 7.7 а), базовый интегратор можно превратить в интегратор тока (см. гл. 3 об усилителях заряда). Можно построить также дифференциальный интегратор тока (рис. 7.7 б). Дифференциальный интегратор тока имеет несколько серьезных недостатков, таких, как необходимость тщательного согласования конденсаторов и применение источника тока с высоким выходным сопртивлением. Эти проблемы решаются включением еще одного ОУ (рис. 7.7 в); в этом случае один ОУ действует как интегратор тока, а дополнительный - как токовое зеркало.

На рис. 7.8 приведены две Схемы для сложения интеграла от входного сигнала с самим сигналом. Надо иметь в виду, что скорость дрейфа выходного напряжения в этих схемах такая же, как в базовом интеграторе.

Если необходимо произвести операцию двойного интегрирования, например, выходного сигнала акселерометра для определения смещения, вместо использования двух интеграторов рассмотрим вариант применения ФНЧ второго порядка с наклоном АЧХ -40 дБ/декада. Реализующая этот вариант схема представлена на рис. 7.9.

Рис. 7.7. Интеграторы тока: а) простой с виртуальной землей, б) дифференциальный, в) дифференциальный с виртуальной землей.

Схема описывается следующей передаточной функцией:

При выборе компонентов - (при этом полюсы и нули компенсируются), получим:

Рис. 7.8. Суммирование входного сигнала и его интеграла: а) неинвертирующее, б) инвертирующее.

Рис. 7.9. Применение фильтра нижних частот в качестве двойного интегратора.

Отметим, что компенсация полюсов и нулей происходит на. частоте, которая обычно близка к середине рабочего диапазона частот. Для получения хорошей компенсации требуется очень точное согласование элементов. Дрейф выходного напряжения описывается выражением:

Другой способ интегрирования аналогового сигнала с использованием элементов цифровой техники показан на рис. 7.10. Здесь входной сигнал преобразуется в частоту с помощью преобразователя напряжения в частоту

Рис. 7.10. Цифро-аналоговый интегратор.

ПНЧ). После этого интеграл от входного сигнала определяется путем подсчета импульсов выходной частоты ПНЧ с помощью двоичного счетчуса. Значение интеграла преобразуется в аналоговую форму с помощью ЦАП. Достоинство этой схемы состоит в том, что значение интеграла хранится не в виде заряда на конденсаторе, а в счетчике в цифровом виде и не подвержено дрейфу.

У интегратора форма выходного напряжения представляет собой интеграл от формы входного напряжения. Схема идеального интегратора на ОУ показана на рис. 54.

Согласно второму правилу ОУ i вх » i С. Ток конденсатора и напряжение на нем связаны соотношением

Поскольку согласно рис. 54

получаем

.

Согласно правилу 1 и и » и н. Поскольку и н = 0, получаем

, или .

Интегрируя обе части уравнения по времени, получаем

где В – постоянная интегрирования, т. е. начальное напряжение на конденсаторе (U C 0) в момент времени t = 0;

t = R 1 C – постоянная времени интегрирования.

Рис. 55

Таким образом, выходное напряжение интегратора (рис. 1) равно интегралу от входного напряжения и обратно пропорционально постоянной времени интегрирования.

Постоянное напряжение на выходе интегратора будет даже тогда, когда входное напряжение равно нулю. При отсутствии входного напряжения интегратор работает как усилитель без обратной связи, поскольку конденсатор препятствует протеканию тока от выхода к инверсному входу. Тем не менее, конденсатор все время заряжается малыми токами дрейфа и смещения, что приводит к усилению напряжения ошибки. Поэтому в схемах реальных интеграторов (рис. 55) параллельно конденсатору включают резистор (R2), который обеспечивает путь для протекания постоянного тока, что позволяет минимизировать напряжение ошибки. Кроме того, с помощью этого резистора ограничивается коэффициент усиления на низких частотах. Резистор R3 введен в схему для компенсации дрейфа ОУ.

Коэффициент передачи идеального интегратора (рис. 54) определяется как

,

т. е. он обратно пропорционален частоте (рис. 56).

Рис. 56 Рис. 57

Для реального интегратора (рис. 56) коэффициент передачи имеет вид

.

ЛАХ реального интегратора показана на рис. 57.

В реальном интеграторе на частотах, при которых реактивное сопротивление конденсатора Х С сравнимо с сопротивлением R 2 , общий импеданс обратной связи не будет преимущественно емкостным, что не даст точного интегрирования. В общем случае, точное интегрирование начинается на частотах, значительно превышающих частоту, при которой Х С = R 2 . Таким образом, для точного интегрирования необходимо выполнение условия

Определим критическую частоту, при которой Х С = R 2

Эта частота определяет частоту излома ЛАХ реального интегратора (рис. 57).

На частотах, меньших f 0 , когда коэффициент усиления постоянен и равен (–R 2 /R 1), схема не работает как интегратор. На частотах, превышающих f 0 , спад коэффициента усиления составляет 20 дБ/дек, т. е. схема работает как интегратор до частоты, при которой коэффициент передачи становится равным нулю.

Порядок расчета интегратора. Для расчета интегратора (рис. 55) необходимо задать:

† амплитуду входного напряжения (U вх max);

† частоту, с которой необходимо начать интегрировать входной сигнал (f );

† частоту (f 1), на которой амплитуда входного сигнала должна быть ослаблена до заданного уровня (U f 1 max).

Расчет производится в следующем порядке.

² Выбираем емкость конденсатора С в диапазоне (0,01…1) мкФ.

² Выбираем критическую частоту f 0 на одну декаду ниже f .

² Находим сопротивление резистора R2

.

² Определяем сопротивление резистора R1 таким, чтобы на частоте f 1

.

На частоте f 1 (во много раз большей f 0) влиянием резистора R2 можно пренебречь. Поэтому в этом случае применимо выражение для определения коэффициента передачи идеального интегратора

,

.

Порядок выполнения работы

1. Получить задание на расчет интегратора– значения U вх max , f , f 1 и U f 1 max .

2. Подобрать емкость конденсатора С в диапазоне (0.01...1 мкФ).

а б
Рис. 62

4. Собрать схему интегратора (рис. 63). Ко входу интегратора подключить генератор синусоидальных сигналов (ЗГ). Установить частоту ЗГ 20 Гц. Включить питание стенда. Установить на выходе интегратора напряжение максимальной амплитуды без искажений. Изменяя частоту ЗГ от 20 Гц до 220 кГц и поддерживая постоянной амплитуду входного напряжения (U вх), снять ЛАХ интегратора. Результаты занести в таблицу 5. Отключить питание стенда. По данным из таблицы 5 построить ЛАХ интегратора и зависимость и вых = j(f ).

Всем доброго времени суток. В одной из своих статей я рассказывал о простых RC-цепях и о влиянии на прохождении сигналов различной формы через эти цепи. Сегодняшняя статья несколько дополнит предыдущую в сфере операционных усилителей.

Интегратор

Различные разновидности интеграторов применяются во многих схемах, например, в активных фильтрах или в системах автоматического регулирования для интегрирования сигнала ошибки.

Простой RC-интегратор имеет два серьёзных недостатка:

  1. При прохождении сигнала через простой RC-интегратор происходит ослабление входного сигнала.
  2. RC-интегратор имеет высокое выходное сопротивление.

Интегратор на основе ОУ лишён данных недостатков, поэтому на практике применяется чаще. Он состоит из ОУ DA1, входного резистора R1 и конденсатора С1, который обеспечивает обратную связь.

Работа интегратора основана на том, что инвертирующий вход заземлён, согласно принципу виртуального замыкания. Через резистор R1 протекает входной ток I BX , в тоже время для уравновешивания точки нулевого потенциала, конденсатор будет заряжаться током одинаковым по величине I BX , но с противоположным знаком. В результате на выходе интегратора будет формироваться напряжение, до которого конденсатор заряжается этим током. Входное сопротивление интегратора будет равно сопротивлению резистора R1, а выходное сопротивление будет определяться параметрами ОУ.

Основные соотношения интегратора


Основным недостатком интегратора на ОУ является явление дрейфа выходного напряжения. В основе данного явления лежит то, что конденсатор С1, кроме заряда входным током заряжается различными токами утечки и смещения ОУ. Последствием данного недостатка является появление напряжения смещения на выходе схемы, которое может привести к насыщению ОУ.

Для устранения данного недостатка может быть применено три способа:

  1. Использование ОУ с малым напряжение смещения.
  2. Периодически разряжать конденсатор.
  3. Шунтировать конденсатор С1 сопротивление RP.

Реализация данных способов показана на рисунке ниже


Включение резистора R СД между землёй и неинвертирующим входом позволяет снизить входное напряжение смещения, за счёт уравновешивания падения напряжения на входах ОУ, величина R СД = R1||RP, либо R СД = R1 (при отсутствии RP).

Величина резистора R P выбирается из того, что постоянная времени R P С1 должна быть значительно больше, чем период интегрирования, то есть R1С1


Конденсаторы, применяемые в интеграторах, должны иметь очень малый ток утечки, особенно если частота интегрирования составляет единицы Гц.

Дифференциатор

Дифференциатор, выполняет функцию противоположную интегратору, то есть на выходе дифференциатора напряжение пропорционально скорости изменения входного напряжения. Так же как и интегратор, дифференциатор находит широкое применение в активных фильтрах и схемах автоматического регулирования. Дифференциатор получается из интегратора путем перемены местами резистора и конденсатора.



Простой дифференциатор имеет два существенных недостатка: большое выходное сопротивление и ослабление входного сигнала, поэтому в современных схемах он почти не применяется. Для дифференцирования сигналов применяют дифференциатор на ОУ, состоящий из ОУ DA1, входного конденсатора С1 и резистора R1, через который осуществляется положительная обратная связь с выхода ОУ на его вход.

При поступлении сигнала на вход дифференциатора конденсатор С1 начинает заряжаться током I BX , за счёт принципа виртуального замыкания ток такой же величины будет протекать и через резистор R1. В результате на выходе ОУ будет формироваться напряжение пропорционально скорости изменения входного напряжения.

Параметры дифференциатора определяются следующими выражениями


Основной недостаток дифференциатора на ОУ состоит в том, что на высоких частотах коэффициент усиления больше, чем на низких частотах. Поэтому на высоких частотах происходит значительное усиление собственных шумов резисторов и активных элементов, кроме того возможно возбуждение дифференциатора на высоких частотах.

Решение данной проблемы является включение дополнительного резистора на вход дифференциатора. Сопротивление резистора должно составлять несколько десятков Ом (в среднем порядка 50 Ом).

Теория это хорошо, но без практического применения это просто слова.