Сколько бывает ядер в процессоре. Multi-Core vs

01.02.2013

Споры о необходимости многоядерных процессоров давно улеглись. Но вопрос востребованности большого количества ядер все еще насущен. Ведь значительная часть приложений, в том числе игр, до сих пор не умеет использовать большое количество параллельных. В этом тесте мы решили выяснить, как влияет количество ядер в процессоре на игровую производительность.

С появлением многоядерных процессоров ситуация с их выбором осложнилась, ведь кроме привычного показателя производительности, коим всегда была тактовая частота, добавился и еще один – количество ядер. Их Intel и AMD начали наращивать стремительно, но потом успокоились, хотя аналитики прогнозировали дальнейшее количество ядер. Фактически, в данный момент максимальным количеством ядер можно считать четыре. И не нужно кивать в сторону процессоров AMD FX, которые сам производитель называет “восьмиядерными”. По факту, они также имеют четыре ядра, если не учитывать удвоенное количество блоков ALU. Просто ядра AMD называет модулями. По общему мнению, это количество ядер и является оптимальным для игр.


Но общее мнение не всегда отражает реальное положение дел. А по факту, многие игры до сих пор не умеют использовать больше двух ядер. И вовсе не потому, что программисты, в компаниях которые их создали, не ратуют за многоядерность, а просто потому, что большинству игровых проектов большая вычислительная мощь не нужна. Причем это относится как к достаточно скромным играм, так и ко многим блокбастерам. Особенно четко данная тенденция стала прослеживаться с появлением DirectX 11. Последний API от Microsoft принес значительное количество изменений связанных с распределением нагрузки, в результате чего значительная часть работы по предварительному обсчету данных и их подготовке перешла от центрального процессора к видеокарте. Нагрузка на графическую подсистему возросла, а вот на CPU наоборот упала.

Эту информацию недооценили многие покупатели, продолжая искать для игрового компьютера самый мощный процессор, кивая на многочисленные игровые тесты, в которых процессоры демонстрируют огромную разницу в производительности. И большинство не задумывается о том, что для игровых тестов процессоров выбираются особые настройки, которые должны выявить разницу в производительности разных моделей, и продемонстрировать ее максимально явно. В реальной жизни такие настройки никто не использует, тем, более имея достаточно производительную систему. Ведь, согласитесь, довольно глупо играть в разрешении 1280 на 720 и минимальных настройках графики в новый шедевр, имея отменную видеокарту вроде Radeon HD 7970, или GeForce GTX 680.

Чтобы адекватно оценить разницу в производительности, которую демонстрируют процессоры с разным количеством ядер, причем в максимально приближенных к реальности условиях, мы пошли другим путем. В наш традиционный тестовый стенд, оснащенный процессором Core i7-2700K, мы установили мощную видеокарту Radeon HD 7950, и прогнали тесты в гораздо более приближенных к реальным режимам настройках. То есть в разрешении Full HD, на максимальных настройках, и с активированной анизотропной фильтрацией. Единственное от чего отказались, так это от сглаживания, которое очень сильно повышает нагрузку на видеокарту, еще больше нивелируя разницу в производительности процессоров.


А процессоров в тесте сразу четыре. Хотя физически это все тот же Core i7 на ядре Sandy Bridge, но мы будем использовать его с одним, двумя, тремя, и четырьмя активными ядрами, и оценивать влияние их количества на производительность. Для того, чтобы результаты были более четными, мы отключили HyperThreading, который может оказывать влияние на результаты, улучшая ситуацию для конфигураций имеющих меньшее количество ядер. Также был отключен автоматический разгон, а частота процессора зафиксирована на уровне 3,5 гигагерца, которая является для него стандартной.

Для тестирования мы используем пять игр из нашего постоянного набора для тестов видеокарт. Это Metro 2033, Crysis 2, Battlefield 3, F1 2011, и ArmA 2. Четыре из них будут протестированы в поддерживаемом ими режиме DirectX 11. А ArmA 2, которая не поддерживает самый новый API выступит в качестве контрольного образца. На основе поведения этой игры мы будем делать выводы о влиянии количества ядер в процессоре на игры, работающие через DirectX 10, который (равно как и предыдущие) значительно больше нагружает центральный процессор. Кроме того, среди фанатов ArmA 2 ходят легенда о том, что данная игра является одной из самых процессорозависимых. Проверим.

Перед тем как переходить к тестам, оговоримся, что наш тест будет полезен только обладателям, или тем, кто планирует купить процессор Intel Core пары последних поколений. То есть на ядрах Sandy Bridge и Ivy Bridge. Так как в силу высокой эффективности этих процессоров, они могут в значительной степени компенсировать меньшее количество ядер, относительно менее эффективных процессоров, вроде AMD Athlon/Phenom, и Core 2 Duo/Core 2 Quad. Для таких процессоров зависимость от количества ядер может быть более выраженной. В то же время нужно помнить и о влиянии частоты процессора на производительность, независимо от количества ядер, и вносить поправку те результаты, которые продемонстрирует наш подопытный. Все точки над “i” вроде расставлены, можно переходить к исследованию результатов тестов.

Первым в бой традиционно отправляется синтетический пакет 3DMark 11. Синтетика вообще очень чувствительна к производительности компонентов, и наверняка хорошо отреагировала бы на изменение количества ядер, если бы нашей целью было бы исследование чистой производительности с помощью теста физики. Но нас интересует графический тест, и в нем результаты оказались отнюдь не самыми ожидаемыми. Как видно на графике, разница между 2,3 и 4 ядрами оказалась фактически нулевой, в пределах погрешности. И только когда активным осталось только одно (!) ядро, 3DMark хоть как-то отреагировал на снижение количества вычислительных ресурсов. Но отреагировал очень вяло. Как видно, нагрузка на процессор в графическом тесте пакета столь мала, что с ней отлично справляется всего одно быстрое и эффективное ядро Sandy Bridge. Фактически в данном тесте больше двух ядер не нужно, а потому быстрый Pentium здесь покажет не худшие результаты, чем Core i5 и Core i7, которые стоят в разы дороже.

Metro 2033

Одна из самых тяжелых и красивых игр для PC, весьма бодро “идет” на видеокарте Radeon HD 7950. А вот к количеству ядер относится весьма скептически. Разница между 2,3 и 4 ядрами достаточно скромная, хотя и более выраженная, чем в 3DMark. А вот при одном активном ядре видна заметная просадка, хотя стоит признать, что и на одном ядре играть можно, пусть и претерпевая некоторые неприятные подергивания, так как минимальный фреймрейт также снизился. Зато двуядерника Metro 2033 хватит за глаза, и только перфекционистам можно порекомендовать приобретать четырехядерник, так как он даст в среднем, лишь на один с небольшим кадр в секунду больше. Pentium вновь выглядит неплохим игровым процессором. Не говоря уже про работающие на более высоких частотах Core i3.

Crysis 2

Мы уже начали предполагать, что и дальше все пойдет по той же схеме, но, как оказалось, у Crysis 2 свой взгляд на количество ядер и их использование. Как видно по графику, CryEngine 3, вполне адекватно реагирует на прибавление количества вычислительных ядер процессора. И даже четыре ядра он знает куда применить. Но с другой стороны, и два ядра выдают вполне приемлемый результат, обеспечивая плавную картинку и отсутствие подергиваний. Да и на одном ядре можно играть, но уже не так комфортно, все же потеряв среднем 24 кадров в секунду весьма ощутима. К тому же если это одно ядро будет меньше частоты (у нас, напоминаем, 3,5 гигагерца), то результат может быть еще хуже. В принципе, как и в предыдущих тестах, вновь отметим, что двух быстрых ядер для Crysis 2 будет вполне достаточно, несмотря на то, что и три и четыре ядра обеспечат небольшой прирост.

Battlefield 3

Гениальнейшая графическая часть, судя по результатам теста, абсолютно независима от количества ядер. График для двух, трех, и четырех ядер практически линеен, и вновь укладывается в пределы погрешности. Как видно, больше двух ядер Battlefield 3 не использует. Но и меньше тоже. При одном активном ядре игра пыталась запуститься, но это ей не удавалось, так что результата данного теста просто нет. Видимо, движок игры в обязательном порядке требует как минимум двух потоков, которые одноядерный процессор предоставить не может. Вывод вновь безрадостный для обладателей мощных четырехядерников – в этой игре они совсем не у дел. Ту же производительность обеспечит процессор с двумя ядрами. Скорее всего, данная игра будет более адекватно реагировать на изменение тактовой частоты, что мы постараемся проверить в будущем. Пока же констатируем, что Core i3 здесь будет лучшим выбором.

Гоночный симулятор, которому приходится просчитывать множество физических данных, в отличие от шутеров должен демонстрировать гораздо более яркую зависимость от количества ядер. И F1 2011 не подвела. Вот где 4 ядра используются на полную катушку, а отключение каждого ядра дает реальный эффект. Отключение всего одного ядра уже уменьшает фреймрейт в два раза! С двумя активными ядрами ситуация еще более усугубляется. А с одним ядром… и вовсе не поиграешь, потому что игра просто отказывается запускаться, сообщая о том, что конфигурация компьютера не отвечает минимальным системным требованиям. Хотя, опять же можно отметить, что и двух ядер будет достаточно для вполне комфортной игры, но в данном случае мы можем признать полностью обоснованными использование четырехядерных Core i5 и Core i7.

Контрольный пациент, в лице ArmA 2 также очень позитивно оценивал прибавление новых ядер. На одном ядре игра, конечно, запускается, но впечатления от нее не самые положительные – бесконечные тормоза не позволяют играть. С двумя ядрами ситуация становится куда лучше – ArmA 2 идет вполне гладко. Ну а три или четыре ядра делают ситуацию практически идеальной, хотя разница в производительности между ними не очень заметна. По данному факту можно сделать вывод, что для ArmA 2 будет идеальным использование Core i5 или Core i7, но вполне достойную производительность обеспечат быстрые двуядерники, вроде Pentium или Core i3.

Выводы

Подводить итоги, и как-то суммировать результаты тестов довольно сложно. Но попробуем. Прежде всего, нужно отметить, что четырехядерники вовсе не бесполезны, и в некоторых играх они имеют значительное преимущество перед процессорами располагающими лишь двумя ядрами. Но многие игры, среди которых и такие хиты, как Battlefield 3, до сих пор вполне довольствуются двухядерниками, и совершенно спокойно относятся к появлению третьего и четвертого ядра. Заранее предсказать, как та или иная игра покажет себя в работе с разным количеством процессорных ядер предсказать практически невозможно, хотя, некоторые общие черты все же есть. В частности, в использование вычислительной мощности процессора в значительной мере зависит от жанра игры. Шутерам не требуются значительные вычислительные ресурсы процессора, в то время как разнообразные симуляторы, а также стратегии, которым нужно обсчитывать большие объемы данных связанных с проработкой физических аспектов игры, или интеллекта множества персонажей, гораздо более требовательны к процессору.

С другой стороны, все игры в нашем тесте показали вполне приемлемый результат даже на двух ядрах. То есть, если вы не гонитесь за рекордами и хотите просто комфортно играть, то вам будет вполне достаточно быстрого двуядерника, такого как, например Core i3, или даже Pentium. При этом вы не будете чувствовать никаких сложностей в 99 процентах игр, ведь пользователю совершенно не критично, выдает игра 40 кадров в секунду, или 200. Тем не менее, в будущем ситуация может измениться, и после появления нового поколения консолей

Процессор в мобильном телефоне. Характеристики и их значение

Индустрия смартфонов с каждым днем прогрессирует, и, как результат, пользователи получают всё более новые, современные и мощные гаджеты. Все производители смартфонов стремятся сделать свое творение особенным и незаменимым. Поэтому на сегодняшний день большое внимание уделяется разработке и производству процессоров для смартфонов.

Наверняка, у многих любителей «умных телефонов» не раз возникал вопрос, что такое процессор, и какие его основные функции? А также, несомненно, покупателей интересует, что обозначают все эти циферки и буквы в названии чипа.
Предлагаем немного ознакомиться с понятием «процессор для смартфона» .

Процессор в смартфоне - это самая сложная деталь и отвечает она за все вычисления, производимые устройством. По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Если речь заходит о процессоре, то сперва надо разобраться с таким понятием, как «архитектура процессора» . Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Можно сказать, что архитектура - это некий набор свойств и качеств, присущий целому семейству процессоров. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и другие, занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Сейчас давайте рассмотрим такие понятия, как ядро и тактовая частота, которые всегда встречаются в обзорах и статьях о смартфонах и телефонах, когда речь идет о процессоре.

Ядро

Начнем с вопроса, а что такое ядро? Ядро – это элемент чипа, который определяет производительность, энергопотребление и тактовую частоту процессора. Очень часто мы сталкиваемся с понятием двухъядерный или четырехъядерный процессор. Давайте разберемся, что же это значит.

Двухъядерный или четырехъядерный процессор – в чем разница?

Очень часто покупатели думают, что двухъядерный процессор в два раза мощнее, чем одноядерный, а четырехъядерный, соответственно, в четыре раза. А теперь мы расскажем вам правду. Казалось бы, вполне логично, что переход с одного ядра к двум, а с двух к четырем увеличивает производительность, но на самом деле редко когда эта мощность возрастает в два или четыре раза. Увеличение количества ядер позволяет ускорить работу девайса за счет перераспределения выполняемых процессов. Но большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор. Да и зачем платить больше? Ведь количество ядер прямо влияет на цену устройства.

Тактовая частота

Следующее понятие, с которым нам предстоит познакомиться - это тактовая частота. Тактовая частота – это характеристика процессора, которая показывает, сколько тактов способен отработать процессор за единицу времени (одну секунду). Например, если в характеристиках устройства указана частота 1,7 ГГц - это значит, что за 1 секунду его процессор осуществит 1 700 000 000 (1 миллиард 700 миллионов) тактов .

В зависимости от операции, а также типа чипа, количество тактов, затрачиваемое на выполнение чипом одной задачи, может отличаться. Чем выше тактовая частота, тем выше скорость работы. Особенно эта разница чувствуется, если сравнивать одинаковые ядра, работающие на разной частоте.

Иногда производитель ограничивает тактовую частоту с целью уменьшения энергопотребления, потому как чем выше скорость процессора, тем больше энергии он потребляет.

И опять возвращаемся к многоядерности. Увеличение тактовой частоты (МГц, ГГц) может увеличить выработку тепла, а это крайне нежелательно и даже вредно для пользователей смартфонов. Поэтому многоядерная технология также используется как один из способов увеличения производительности работы смартфона, при этом не нагревая его в вашем кармане.

Производительность увеличивается, позволяя приложениям работать одновременно на нескольких ядрах, но есть одно условие: приложения должны последнего поколения. Такая возможность также позволяет экономить расход заряда батареи.

Кэш процессора

Еще одна важная характеристика процессора, о которой продавцы смартфонов часто умалчивают - это кэш процессора .

Кэш – это память, предназначенная для временного хранения данных и работающая на частоте процессора. Кэш используется для того, чтобы уменьшить время доступа процессора к медленной оперативной памяти. Он хранит копии части данных оперативной па-мяти. Время доступа уменьшается за счет того, что большинство данных, требуемых процессо-ром, оказываются в кэше, и количество обращений к оперативной памяти снижается. Чем больше объем кэша, тем большую часть необходимых программе данных он мо-жет в себе содержать , тем реже будут происходить обращения к оперативной памяти, и тем выше будет общее быстродействие системы.

Особенно актуален кэш в современных системах, где разрыв между скоростью работы процес-сора и скоростью работы оперативной памяти довольно большой. Конечно, возникает вопрос, почему же эту характеристику не желают упоминать? Всё очень просто. Наведем пример. Предположим, что есть два всем известных процессора (условно A и B) с абсолютно одинаковым числом ядер и тактовой частотой, но почему-то А работает намного быстрее, чем В. Объяснить это очень просто: у процессора А кэш больше, следовательно, и сам процессор работает быстрее.

Особенно разница в объеме кэша ощущается между китайскими и брендовыми телефонами. Казалось бы, по циферках характеристик всё вроде как совпадает, а вот цена устройств отличается. И вот здесь покупатели решают сэкономить с мыслью «а зачем платить больше, если нет никакой разницы?» Но, как видим, разница есть и очень существенная, только вот продавцы о ней часто умалчивают и продают китайские телефоны по завышенным ценам.

Во многом зависит от количества ядер, которые он в себя включает. Поэтому многие пользователи интересуются, как узнать количество ядер процессора. Если вас также заинтересовал этот вопрос, то эта статья должна вам помочь.

Как узнать количество ядер в процессоре с помощью Windows

Самый простой способ узнать количество ядер в процессоре, это посмотреть модель процессора и потом, посмотреть в интернете, он оснащен. Для этого нужно открыть окно «Просмотр основных сведений о вашем компьютере. Данное окно можно открыть несколькими способами:

  • Откройте меню «Пуск» и перейдите в « ». После этого откройте раздел «Система и безопасность», а потом подраздел «Система»;
  • Кликните правой кнопкой мышки по иконке «Мой компьютер» и выберите пункт «Свойства».
  • Или просто нажмите комбинацию клавиш Win+Break;

После открытия данного окна обратите внимание на .

Введите название данного процессора в поисковую систему и перейдите на официальный сайт производителя.

Таким образом, вы попадете на страницу с . Здесь нужно найти информацию о количестве ядер.

Если у вас Windows 8 или Windows 10, то вы можете узнать количество ядер процессора, (комбинация клавиш CTRL-SHIFT-ESC) на вкладке «Производительность».

В Windows 7 и более старых версиях Windows, информация о количестве ядер не отображается в «Диспетчере задач». Вместо этого там отображается отдельный график загрузки для каждого ядра. Если у вас процессор от AMD, то количество таких графиков будет равняться количеству ядер.

Но, если у вас процессор от Intel, то количеству графиков нельзя доверять, поскольку в процессоре может использоваться технология Hyper-threading, которая увеличивает реальное количество ядер в два раза.

Как узнать количество ядер процессора с помощью специальных программ

Также вы можете прибегнуть к помощи специальных программ для просмотра характеристик компьютера. В данном случае лучше всего подойдет программа CPU-Z. Запустите данную программу на своем компьютере и посмотрите значение «Cores», которое отображается внизу окна на вкладке «CPU».

Данное значение соответствует количеству ядер в вашем процессоре.

Гонку за дополнительную производительность на рынке процессоров могут выиграть только те производители, которые на основе текущих технологий производства смогут обеспечить разумный баланс между тактовой частотой и количеством вычислительных ядер. Благодаря переходу на 90- и 65-нм техпроцессы появилась возможность создавать процессоры с большим числом ядер. В немалой степени это было обусловлено и новыми возможностями регулировки тепловыделения, и размерами ядер, именно поэтому сегодня мы наблюдаем появление всё большего числа четырёхядерных процессоров. Но как насчёт программного обеспечения? Насколько хорошо оно масштабируется от одного до двух или четырёх ядер?

В идеальном мире программы, оптимизированные под многопоточность, позволяют операционной системе распределять несколько потоков по доступным вычислительным ядрам, будь то один процессор или несколько, с одним ядром или с несколькими. Добавление новых ядер позволяет получить больший прирост производительности, чем любой прирост тактовой частоты. Это действительно имеет смысл: большее количество рабочих почти всегда справятся с заданием быстрее, чем меньшее количество более быстрых рабочих.

Но имеет ли смысл оснащать процессоры четырьмя или даже большим числом ядер? Хватит ли работы, чтобы нагрузить четыре ядра или большее их количество? Не стоит забывать, что весьма сложно распределить работу между ядрами, чтобы такие физические интерфейсы, как HyperTransport (AMD) или Front Side Bus (Intel), не стали "узким местом". Есть и третий вариант: механизм, который распределяет нагрузку между ядрами, а именно, диспетчер ОС, может тоже стать "узким местом".

Переход AMD с одного на два ядра прошёл практически безупречно, поскольку компания не увеличивала тепловой пакет до экстремального уровня, как это было у процессоров Intel Pentium 4. Поэтому процессоры Athlon 64 X2 были дорогими, но вполне разумными, а линейка Pentium D 800 прославилась своей горячей работой. Но 65-нм процессоры Intel и, в особенности, линейка Core 2 изменили картину. Intel смогла сочетать два процессора Core 2 Duo в одной упаковке, в отличие от AMD, в результате чего мы и получили современные Core 2 Quad. AMD обещает выпустить до конца этого года свои собственные четырёхядерные процессоры Phenom X4.

В нашей статье мы рассмотрим конфигурацию Core 2 Duo на четырёх ядрах, двух ядрах и на одном ядре. И посмотрим, насколько хорошо масштабируется производительность. Стоит ли сегодня переходить на четыре ядра?

Одно ядро

Под термином "одноядерный" скрывается процессор, который обладает одним вычислительным ядром. Сюда подпадают практически все процессоры с зарождения архитектуры 8086 вплоть до Athlon 64 и Intel Pentium 4. Пока техпроцесс производства не стал достаточно тонким, чтобы создавать два вычислительных ядра на одном кристалле, переход на меньший техпроцесс использовался для снижения рабочего напряжения, увеличения тактовых частот или добавления функциональных блоков и кэш-памяти.

Работа одноядерного процессора на высоких тактовых частотах может дать более высокую производительность для одного приложения, но подобный процессор в один момент времени может выполнять только одну программу (поток). Intel реализовала принцип Hyper-Threading, который эмулирует наличие нескольких ядер для операционной системы. Технология HT позволила лучше загрузить длинные конвейеры процессоров Pentium 4 и Pentium D. Конечно, прирост производительности был невелик, но отзывчивость системы оказалась определённо лучше. А в многозадачном окружении это может быть и важнее, поскольку вы сможете выполнять какую-либо работу, пока ваш компьютер работает над определённой задачей.

Поскольку двуядерные процессоры сегодня стоят очень дёшево, мы не рекомендуем брать одноядерные процессоры, если только вы не хотите экономить каждую копейку.


Процессор Core 2 Extreme X6800 на момент выхода был самым быстрым в линейке Intel Core 2, работая на частоте 2,93 ГГц. Сегодня двуядерные процессоры достигли 3,0 ГГц, правда, при более высокой частоте шины FSB1333.

Переход на два процессорных ядра означает в два раза большую вычислительную мощность, но только на приложениях, оптимизированных под многопоточность. Обычно такие приложения включают профессиональные программы, которым нужна высокая вычислительная мощность. Но двуядерный процессор всё равно имеет смысл, даже если вы используете свой компьютер лишь для электронной почты, просмотра интернет-страниц и работы с офисными документами. С одной стороны, современные модели двуядерных процессоров потребляют не особо больше энергии, чем одноядерные модели. С другой стороны, второе вычислительное ядро не только добавляет производительность, но и улучшает отзывчивость системы.

Вы когда-нибудь ждали, пока WinRAR или WinZIP закончат сжатие файлов? На одноядерной машине вы вряд ли сможете быстро переключаться между окнами. Даже воспроизведение DVD может нагружать одно ядро не меньше, чем сложная задача. Двуядерный процессор позволяет легче справляться с одновременным запуском нескольких приложений.

Двуядерные процессоры AMD содержат два полноценных ядра с кэш-памятью, интегрированным контроллером памяти и кросс-коммутатором, который обеспечивает совместный доступ к памяти и к интерфейсу HyperTransport. Intel пошла путём, схожим с первым Pentium D, установив в физический процессор два ядра Pentium 4. Поскольку контроллер памяти является частью чипсета, системную шину приходится использовать и для связи между ядрами, и для доступа к памяти, что накладывает определённые ограничения на производительность. Процессор Core 2 Duo оснащён более совершенными ядрами, которые дают лучшую производительность на такт и лучшее соотношение производительности на ватт. У двух ядер используется общий кэш L2, который позволяет обмениваться данными без использования системной шины.

Процессор Core 2 Quad Q6700 работает на частоте 2,66 ГГц, используя внутри два ядра Core 2 Duo.

Если сегодня существует много причин, чтобы перейти на двуядерные процессоры, то четыре ядра выглядят пока не так убедительно. Одна из причин заключается в ограниченной оптимизации программ под несколько потоков, но существуют и определённые проблемы в архитектуре. Хотя AMD сегодня критикует Intel за упаковку двух двуядерных кристаллов в одном процессоре, считая это не "настоящим" четырёхядерным CPU, подобный подход Intel работает хорошо, поскольку процессоры действительно обеспечивают четырёхядерную производительность. С точки зрения производства легче получить высокий уровень выхода годных кристаллов и выпускать больше продуктов с небольшими ядрами, которые затем можно соединить вместе для нового, более мощного продукта на новом техпроцессе. Что же касается производительности, то есть "узкие места" - два кристалла взаимодействуют друг с другом через системную шину, поэтому весьма сложно управлять несколькими ядрами, распределёнными на несколько кристаллов. Хотя наличие нескольких кристаллов позволяет обеспечить лучшую экономию энергии и регулировать частоты отдельных ядер для нужд приложения.

Настоящие четырёхядерные процессоры используют четыре ядра, которые, вместе с кэш-памятью, располагаются на одном кристалле. Здесь важно наличие общего унифицированного кэша. AMD будет реализовывать такой подход, оснащая 512 кбайт кэша L2 каждое ядро и добавляя кэш L3 для всех ядер. Преимущество AMD заключается в том, что можно будет выключать отдельные ядра и ускорять другие, чтобы получить более высокую производительность однопоточных приложений. Intel пойдёт тем же путём, но не раньше представления в 2008 году архитектуры Nehalem.

Утилиты вывода системной информации, такие, как CPU-Z, позволяют узнать число ядер и объёмы кэша, но не раскладку процессора. Вы не узнаете, что Core 2 Quad (или четырёхядерный Extreme Edition, показанный на скриншоте) состоит из двух ядер.


Но с покорением новых вершин показателей частоты, наращивать её стало тяжелее, так как это сказывалось на увеличении TDP процессоров. Поэтому разработчики стали растить процессоры в ширину, а именно добавлять ядра, так и возникло понятие многоядерности.

Ещё буквально 6-7 лет назад, о многоядерности процессоров практически не было слышно. Нет, многоядерные процессоры от той же компании IBM существовали и ранее, но появление первого двухъядерного процессора для настольных компьютеров , состоялось лишь в 2005 году, и назывался данный процессор Pentium D. Также, в 2005 году был выпущен двухъядерник Opteron от AMD, но для серверных систем.

В данной статье, мы не будем подробно вникать в исторические факты, а будем обсуждать современные многоядерные процессоры как одну из характеристик CPU. А главное – нам нужно разобраться с тем, что же даёт эта многоядерность в плане производительности для процессора и для нас с вами.

Увеличение производительности за счёт многоядерности

Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разбиении выполнения потоков (различных задач) на несколько ядер. Обобщая, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.

Сразу оговорюсь, что операционная система может виртуально создать для себя множество потоков и выполнять это все как бы одновременно, пусть даже физически процессор и одноядерный. Этот принцип реализует ту самую многозадачность Windows (к примеру, одновременное прослушивание музыки и набор текста).


Возьмём для примера антивирусную программу. Один поток у нас будет сканирование компьютера, другой – обновление антивирусной базы (мы всё очень упростили, дабы понять общую концепцию).

И рассмотрим, что же будет в двух разных случаях:

а) Процессор одноядерный. Так как два потока выполняются у нас одновременно, то нужно создать для пользователя (визуально) эту самую одновременность выполнения. Операционная система, делает хитро: происходит переключение между выполнением этих двух потоков (эти переключения мгновенны и время идет в миллисекундах). То есть, система немного «повыполняла» обновление, потом резко переключилась на сканирование, потом назад на обновление. Таким образом, для нас с вами создается впечатление одновременного выполнения этих двух задач. Но что же теряется? Конечно же, производительность. Поэтому давайте рассмотрим второй вариант.

б) Процессор многоядерный. В данном случае этого переключения не будет. Система четко будет посылать каждый поток на отдельное ядро, что в результате позволит нам избавиться от губительного для производительности переключения с потока на поток (идеализируем ситуацию). Два потока выполняются одновременно, в этом и заключается принцип многоядерности и многопоточности. В конечном итоге, мы намного быстрее выполним сканирование и обновление на многоядерном процессоре, нежели на одноядерном. Но тут есть загвоздочка – не все программы поддерживают многоядерность. Не каждая программа может быть оптимизирована таким образом. И все происходит далеко не так идеально, насколько мы описали. Но с каждым днём разработчики создают всё больше и больше программ, у которых прекрасно оптимизирован код, под выполнение на многоядерных процессорах.

Нужны ли многоядерные процессоры? Повседневная резонность

При выборе процессора для компьютера (а именно при размышлении о количестве ядер), следует определить основные виды задач, которые он будет выполнять.

Для улучшения знаний в сфере компьютерного железа, можете ознакомится с материалом про сокеты процессоров .

Точкой старта можно назвать двухъядерные процессоры, так как нет смысла возвращаться к одноядерным решениям. Но и двухъядерные процессоры бывают разные. Это может быть не «самый» свежий Celeron, а может быть Core i3 на Ivy Bridge, точно так же и у АМД – Sempron или Phenom II. Естественно, за счёт других показателей производительность у них будет очень отличаться, поэтому нужно смотреть на всё комплексно и сопоставлять многоядерность с другими характеристиками процессоров .

К примеру, у Core i3 на Ivy Bridge, в наличии имеется технология Hyper-Treading, что позволяет обрабатывать 4 потока одновременно (операционная система видит 4 логических ядра, вместо 2-ух физических). А тот же Celeron таким не похвастается.

Но вернемся непосредственно к размышлениям относительно требуемых задач. Если компьютер необходим для офисной работы и серфинга в интернете, то ему с головой хватит двухъядерного процессора.

Когда речь заходит об игровой производительности, то здесь, чтобы комфортно чувствовать себя в большинстве игр необходимо 4 ядра и более. Но тут всплывает та самая загвоздочка: далеко не все игры обладают оптимизированным кодом под 4-ех ядерные процессоры, а если и оптимизированы, то не так эффективно, как бы этого хотелось. Но, в принципе, для игр сейчас оптимальным решением является именно 4-ых ядерный процессор.


На сегодняшний день, те же 8-ми ядерные процессоры AMD , для игр избыточны, избыточно именно количество ядер, а вот производительность не дотягивает, но у них есть другие преимущества. Эти самые 8 ядер, очень сильно помогут в задачах, где необходима мощная работа с качественной многопоточной нагрузкой. К таковой можно отнести, например рендеринг (просчёт) видео, или же серверные вычисления. Поэтому для таких задач необходимы 6, 8 и более ядер. Да и в скором времени игры смогут качественно грузить 8 и больше ядер, так что в перспективе, всё очень радужно.

Не стоит забывать о том, что остается масса задач, создающих однопоточную нагрузку. И стоит задать себе вопрос: нужен мне этот 8-ми ядерник или нет?

Подводя небольшие итоги, еще раз отмечу, что преимущества многоядерности проявляются при «увесистой» вычислительной многопоточной работе. И если вы не играете в игры с заоблачными требованиями и не занимаетесь специфическими видами работ требующих хорошей вычислительной мощи, то тратиться на дорогие многоядерные процессоры, просто нет смысла (